Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.
Abstract:
A disclosed gate driver includes a plurality of stages, a kth stage comprising: a first output node connected to an emission line; a second output node; a Q node connected to a first controller and a pull-down circuit; the pull-down circuit and a pull-up circuit respectively controlled by the Q node and the second output node; the first controller configured to receive a voltage of a first output node of a (k−1)th stage or a first start signal; a second controller configured to receive a voltage of a second output node of the (k−1)th stage or a second start signal; a third controller configured to control the voltage of the second output node; and a fourth controller configured to be controlled by the second output node and to control the voltage of the first output node, wherein ‘k’ is a natural number ≥1.
Abstract:
An electroluminescence display device and a gate driver are provided. An electroluminescence display device includes: an emission line (EL), subpixels connected to the EL, and an emission driver supplying an emission signal to the EL, the emission driver including a plurality of stages, a kth stage including: a first output (O1) node connected to the EL, a second output (O2) node, a Q node, a pull-down circuit and a pull-up circuit respectively controlled by the Q and O2 nodes and providing a voltage to the O1 node, a first controller receiving an O1 node voltage of a (k−1)th stage or a first start signal, a second controller receiving an O2 node voltage of the (k−1)th stage or a second start signal, a third controller controlling the O2 node voltage, and a fourth controller controlled by the O2 node, wherein ‘k’ is a natural number ≥1.
Abstract:
Provided herein is a light emission control driver according to an aspect of the present disclosure. The light emission control driver includes a plurality of stages, wherein each of the plurality of stages has a first circuit part configured to receive a first start signal and a second start signal and control a first node and a second node in response to a first clock signal, a third circuit part configured to output a second light emission control signal in response to a first control signal applied to the first node or a second control signal applied to the second node, and an output part configured to output a first light emission control signal in response to the first control signal or the second light emission control signal.