Abstract:
An organic light emitting device includes a substrate, a first electrode on the substrate, a second electrode, a first stack on the first electrode and including a hole injection layer, a first hole transport layer, a first mixed layer, a second hole transport layer, a first light emitting layer, and a first electron transport layer sequentially laminated, a second stack between the first stack and the second electrode and including a third hole transport layer, a fourth hole transport layer, a second light emitting layer, and a second electron transport layer sequentially laminated, and a charge generation layer between the first stack and the second stack to control charge balance between the first and second stacks. The first mixed layer includes materials used to form the first and second hole transport layers.
Abstract:
An organic light emitting display device includes first and second electrodes facing each other on a substrate, a charge generation layer formed between first and second electrodes, a first light emitting unit including a first emission layer formed between the first electrode and the charge generation layer, a hole transport layer supplying holes from the first electrode to the first emission layer, and a second light emitting unit including a second emission layer formed between the second electrode and the charge generation layer, a hole transport layer supplying holes from the charge generation layer to the second emission layer, wherein a total thickness of the hole transport layer of the first light emitting unit is greater than that of the hole transport layer of the second light emitting unit.
Abstract:
An organic electroluminescent device and organic electroluminescent display device having enhanced efficiency are disclosed. The organic electroluminescent device includes first and second electrodes facing each other on a substrate, first and second emission layers formed between the first and second electrodes, a hole transport layer formed between the first electrode and the first emission layer, an electron transport layer formed between the second electrode and the second emission layer, and at least one emission control layer formed between the first and second emission layers and having the same properties as those of at least any one of the hole transport layer and the electron transport layer.
Abstract:
An organic electroluminescent device and organic electroluminescent display device having enhanced efficiency are disclosed. The organic electroluminescent device includes first and second electrodes facing each other on a substrate, first and second emission layers formed between the first and second electrodes, a hole transport layer formed between the first electrode and the first emission layer, an electron transport layer formed between the second electrode and the second emission layer, and at least one emission control layer formed between the first and second emission layers and having the same properties as those of at least any one of the hole transport layer and the electron transport layer.
Abstract:
An organic light emitting display device includes first and second electrodes facing each other on a substrate, a charge generation layer formed between first and second electrodes, a first light emitting unit including a first emission layer formed between the first electrode and the charge generation layer, a hole transport layer supplying holes from the first electrode to the first emission layer, and a second light emitting unit including a second emission layer formed between the second electrode and the charge generation layer, a hole transport layer supplying holes from the charge generation layer to the second emission layer, wherein a total thickness of the hole transport layer of the first light emitting unit is greater than that of the hole transport layer of the second light emitting unit.
Abstract:
An organic light emitting display device with improved lifespan is disclosed. The organic light emitting display device includes first and second electrodes facing each other on a substrate, at least two light emitting units formed between the first and second electrodes, an N-type charge generation layer and a P-type charge generation layer sequentially stacked between the light emitting units, and at least one auxiliary charge generation layer formed between at least any one of the P-type charge generation layer and the N-type charge generation layer and an emitting layer of the light emitting unit disposed on an upper or lower portion of the at least any one thereof and generating electrons and holes supplied to the emitting layer of the light emitting unit.
Abstract:
An organic light emitting device includes a substrate, a first electrode on the substrate, a second electrode, a first stack on the first electrode and including a hole injection layer, a first hole transport layer, a first mixed layer, a second hole transport layer, a first light emitting layer, and a first electron transport layer sequentially laminated, a second stack between the first stack and the second electrode and including a third hole transport layer, a fourth hole transport layer, a second light emitting layer, and a second electron transport layer sequentially laminated, and a charge generation layer between the first stack and the second stack to control charge balance between the first and second stacks. The first mixed layer includes materials used to form the first and second hole transport layers.
Abstract:
An organic light emitting display device with improved lifespan is disclosed. The organic light emitting display device includes first and second electrodes facing each other on a substrate, at least two light emitting units formed between the first and second electrodes, an N-type charge generation layer and a P-type charge generation layer sequentially stacked between the light emitting units, and at least one auxiliary charge generation layer formed between at least any one of the P-type charge generation layer and the N-type charge generation layer and an emitting layer of the light emitting unit disposed on an upper or lower portion of the at least any one thereof and generating electrons and holes supplied to the emitting layer of the light emitting unit.
Abstract:
An organic light emitting display device includes first and second electrodes facing each other on a substrate, a first stack including a first hole transport layer, a second hole transport layer, a first emitting layer, and a first electron transport layer, the layers being sequentially stacked on the first electrode, a second stack including a third hole transport layer, a fourth hole transport layer, a second emitting layer including at least two hosts and a single dopant and having at least three emitting areas, and a second electron transport layer, the layers being sequentially stacked between the first stack and the second electrode, wherein the second emitting layer includes a first emitting area including a material of the fourth hole transport layer, a second emitting area including a material of the second electron transport layer, and a third emitting area including the at least two hosts.