Abstract:
A touch sensor integrated display device and a method for driving the same are disclosed. The touch sensor integrated display device includes a display panel, each pixel of a pixel array including an OLED and a driving TFT applying a source-drain current to the OLED, the pixel array being divided into touch blocks, each touch block including pixels and a sensing target pixel line coupled to a subset of the pixels, and a panel drive circuit configured to, in a touch sensing period, supply a scan control signal and a sensing control signal to the sensing target pixel line corresponding to a touch block, set a gate-source voltage of the driving TFT coupled to the sensing target pixel line to turn on the driving TFT, and output a sensing value by sensing a change in the source-drain current of the driving TFT caused by a touch input.
Abstract:
The present invention provides a display device that comprises a display panel displaying an image, M reference voltage generators (M is an integer of 2 or greater) that respectively supply reference voltages to N display areas (N is an integer of 2 or greater) defined on the display panel, and a voltage variation corrector that corrects for voltage variations between the M reference voltages (M is an integer of 2 or greater).
Abstract:
A display device and a driving method of the display device are disclosed. The display device includes a display panel including a plurality of pixels, wherein each of the pixels is composed of three sub-pixels among a first color sub-pixel, a second color sub-pixel, a third color sub-pixel, and a fourth color sub-pixel, an image processing unit configured to change a color combination on a time axis in at least one of the pixels, and render sub-pixel data of an input image in the color combination, and a display panel driving circuit configured to write data received from the image processing unit to the pixels.
Abstract:
An organic light emitting display is provided which offers shorter sensing time and higher sensing accuracy when sensing variations in electrical characteristics of a driving element. The organic light emitting display can include: a display panel with a plurality of pixels; a gate driving circuit that generates a sensing gate pulse corresponding to one line sensing ON time in a sensing operation and sequentially supplies the same to gate lines in a line sequential manner; a data driving circuit comprising a plurality of current integrators that perform an integration of the source-drain current of the driving TFT of each pixel input through the sensing lines and an ADC that sequentially digitizes the output of the current integrators to output digital sensed values; and a timing controller that controls the operations of the gate driving circuit and data driving circuit.