Abstract:
A display device that is capable of being manufactured through a simplified process and at reduced cost is disclosed. The display device is configured such that a plurality of grouped cathode electrodes and a plurality of grouped black matrices intersect each other in the state in which an encapsulation unit is disposed therebetween in order to form a touch sensor, so that a process of forming first and second touch electrodes is omitted and a separate adhesion process becomes unnecessary, whereby structural simplification is achieved while costs are reduced.
Abstract:
An organic electro-luminescence device capable of reducing a resistance of a cathode electrode to enhance brightness uniformity at each location within the device is described. The organic electro-luminescence device includes a bank layer formed over a substrate, the bank layer including a first, second, and third portion. A first electrode is formed between the first and second portions of the bank layer. An auxiliary electrode is formed where at least a part of the auxiliary electrode is formed between the second and third portions of the bank layer. A voltage drop prevention pattern is formed on the auxiliary electrode. An organic material layer formed between the first and second portions of the bank layer. A second electrode formed on the organic material layer, where at least a portion of the second electrode is electrically coupled to the auxiliary electrode.
Abstract:
An organic light emitting diode display device and a method of fabricating the organic light emitting diode display device are discussed. The organic light emitting diode display device includes, a plurality of first electrodes extending in a first direction and a second direction; a common line to adjacent plurality of first electrodes; a pixel definition layer disposed at boundaries of the plurality of first electrodes; an adhesive pattern disposed on the common line; a wall on the adhesive pattern and overlapping the common line; an organic layer on the plurality of first electrodes and on the wall; and a second electrode on the organic layer and contacting the common line in a portion under an overhang of the wall, wherein the organic layer is spaced apart from the adhesive pattern by a distance, and wherein the distance is covered by a portion of the second electrode.
Abstract:
An OLED display device includes a substrate, a driving thin film transistor (TFT) formed on the substrate, a passivation layer formed over the substrate and covering the driving TFT, an OLED display formed on the passivation layer, the OLED including a first electrode, an organic emitting layer and a second electrode, a base line formed on the passivation layer, a support pattern formed on the central portion of the base line, a first bank layer covering a boundary portion of each of the first electrode and the base line so as to expose a central portion of each of the first electrode and the base line, and a second bank layer formed on the support pattern. The organic emitting layer is formed on the first electrode, the first and second bank layers and the support pattern in a pixel region of the substrate, and is cut at a top edge portion of the support pattern to expose a portion of the base line, and the second electrode covers the organic emitting layer and is connected to the portion of the base line.
Abstract:
An organic light-emitting display device characterized by improved reliability is disclosed. The organic light-emitting display device is configured such that each of an organic encapsulation layer, which is disposed on a light-emitting element, and an upper inorganic encapsulation layer, which is disposed on the organic encapsulation layer, are divided into a plurality of parts. Even when cracks are formed in a subpixel due to an external impact or when external moisture or oxygen permeates into the subpixel, therefore, it is possible to prevent the cracks, the moisture, or the oxygen from diffusing to an adjacent subpixel, whereby the reliability and lifespan of the display device are improved.
Abstract:
An organic electroluminescent display device includes an organic electroluminescent display panel including top emission pixels to emit light toward a top side of a substrate and bottom emission pixels to emit light toward a bottom side of the substrate, the top emission pixels and the bottom emission pixels being formed such that corresponding ones thereof share a common transparent area, a scan driver for supplying a scan signal to scan lines each connected to selected ones of the top and bottom emission pixels, and a data driver for supplying a data voltage to data lines each connected to selected ones of the top and bottom emission pixels. The top emission pixels and the bottom emission pixels are formed on the substrate to alternate with each other on a pixel basis, on a scan line basis, or a data line basis.