Abstract:
An OLED display device and a method of fabricating the same are disclosed. The OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.
Abstract:
An organic light-emitting display device characterized by improved reliability is disclosed. The organic light-emitting display device is configured such that each of an organic encapsulation layer, which is disposed on a light-emitting element, and an upper inorganic encapsulation layer, which is disposed on the organic encapsulation layer, are divided into a plurality of parts. Even when cracks are formed in a subpixel due to an external impact or when external moisture or oxygen permeates into the subpixel, therefore, it is possible to prevent the cracks, the moisture, or the oxygen from diffusing to an adjacent subpixel, whereby the reliability and lifespan of the display device are improved.
Abstract:
Disclosed is an organic light-emitting display device that is capable of preventing the reflection of light incident from outside and improving transparency when a transparent display is realized. The organic light-emitting display device includes a first substrate defined by a transmission area and a light emission area, a first electrode located on a region of a planarization film, which covers a thin film transistor, corresponding to the light emission area, the first electrode being electrically connected to the thin film transistor, and a shielding layer located to cover a region of the planarization film corresponding to the transmission area and the side surface of the planarization film, the shielding layer being electrically isolated from the first electrode. A black bank is provided between the transmission area and the emission area so as to cover the edge of the first electrode, and an organic light emissive layer and a second electrode, which covers the organic light emissive layer, are sequentially formed on the first electrode.
Abstract:
A quantum dot includes a seed and a core enclosing the seed. The core is grown from the seed to improve size uniformity of the core. The seed includes a first compound without Cd. The first compound may be GaP. The core may include a second compound including elements from group XIII and group XV. The second compound may be InP. The quantum dot may also include a first shell of a third compound enclosing the core. The third compound may be ZnSe or ZnS. The quantum dot may also include a second shell of a fourth compound enclosing the first shell. The fourth compound may be ZnS when the third compound is ZnSe. Embodiments also relate to a quantum dot including first to third elements selected from XIII group elements and XV group elements and fourth to sixth elements selected from XII group elements and XVI group elements.
Abstract:
A quantum dot includes a seed and a core enclosing the seed. The core is grown from the seed to improve size uniformity of the core. The seed includes a first compound without Cd. The first compound may be GaP. The core may include a second compound including elements from group XIII and group XV. The second compound may be InP. The quantum dot may also include a first shell of a third compound enclosing the core. The third compound may be ZnSe or ZnS. The quantum dot may also include a second shell of a fourth compound enclosing the first shell. The fourth compound may be ZnS when the third compound is ZnSe. Embodiments also relate to a quantum dot including first to third elements selected from XIII group elements and XV group elements and fourth to sixth elements selected from XII group elements and XVI group elements.
Abstract:
An organic light emitting display panel with improved efficiency and lifespan and a method of manufacturing the same are disclosed. The organic light emitting display panel according to the present invention includes a substrate having red, green, blue, and white sub-pixel regions, red, green, and blue color filters respectively formed in the red, green, and blue sub-pixel regions, an overcoat layer that is formed in the red and green sub-pixel regions except for the blue and white sub-pixel regions or is formed in the sub-pixel regions such that a thickness of the overcoat layer in the red and green sub-pixel regions is greater than a thickness of the overcoat layer in the blue and white sub-pixel regions; and organic emitting cells respectively formed in the red, green, blue, and white sub-pixel regions.
Abstract:
A display device that is capable of being manufactured through a simplified process and at reduced cost is disclosed. The display device is configured such that a plurality of grouped cathode electrodes and a plurality of grouped black matrices intersect each other in the state in which an encapsulation unit is disposed therebetween in order to form a touch sensor, so that a process of forming first and second touch electrodes is omitted and a separate adhesion process becomes unnecessary, whereby structural simplification is achieved while costs are reduced.
Abstract:
Disclosed is an organic light-emitting display device configured such that the undercut shape of an auxiliary electrode is improved and such that a region where the auxiliary electrode and a second electrode contact is filled with an inorganic film, whereby a gap is prevented from being formed and the reliability of the organic light-emitting display device is improved. The organic light-emitting display device includes a first electrode located on a substrate defined by an active area and a non-active area, an organic layer including an emissive layer located on the first electrode, a second electrode located on the organic layer, an auxiliary electrode located in the non-active area, and a passivation layer located on the auxiliary electrode, the passivation layer having a reverse taper-shaped end so as to be exposed to the side surface of the auxiliary electrode. The second electrode extends to the non-active area so as to be electrically connected to the exposed auxiliary electrode. In addition, the auxiliary electrode has a taper-shaped end under the passivation layer.
Abstract:
An OLED display device and a method of fabricating the same are disclosed. The OLED display device includes a substrate including a display area provided with an organic light emitting element and a pad area provided with a plurality of pads, the pad area formed around the display area, an encapsulation layer formed on the substrate such that the encapsulation layer covers the organic light emitting element, and a dam formed between the display area and the pad area, the dam controlling flow of an organic film material constituting the encapsulation layer.