Abstract:
Disclosed herein is a touch-sensitive display device comprising: a first set of metal electrodes including a first metal electrode; a second set of metal electrodes including a second metal electrode and a third metal electrode, the first metal electrode located between the second metal electrode and the third metal electrode such that the second metal electrode is physically separated from the third metal electrode; a first set of touch electrodes including a first touch electrode that is connected to the first metal electrode; a second set of touch electrodes including a second touch electrode and a third touch electrode, the second touch electrode connected to the second metal electrode and the third touch electrode connected to the third metal electrode; an insulation film having a plurality of contact holes; and a connection electrode electrically connecting the second metal electrode to the third metal electrode through the plurality of contact holes.
Abstract:
Provided are a flexible thin film transistor substrate and a flexible organic light emitting display device. The flexible thin film transistor substrate includes: a flexible substrate including at least one thin film transistor (TFT) area and having flexibility, an active layer disposed in the TFT area on the flexible substrate, a gate insulation layer disposed on the active layer, a gate electrode overlapping with the active layer on the gate insulation layer, an insulating interlayer disposed on the gate electrode, and a source electrode and a drain electrode disposed on the insulating interlayer and connected with the active layer, respectively. The gate insulation layer or the insulating interlayer includes at least one hole pattern configured to reduce bending stress.
Abstract:
An organic light-emitting display device includes an anti-peeling pattern. An organic light-emitting element including a pixel electrode, an organic light-emitting layer, and a common electrode is disposed on a substrate. A bank layer is disposed on the pixel electrode so as to expose at least a portion of the pixel electrode. The anti-peeling pattern having at least one delta-shaped space is disposed on the bank layer. The anti-peeling pattern, disposed on the bank layer, minimizes peeling of the encapsulation layer that can be caused by either compressive or tensile stress generated by bending in a flexing environment in which the organic light-emitting display device is used.
Abstract:
Disclosed herein is a touch-sensitive display device comprising: a first set of metal electrodes including a first metal electrode; a second set of metal electrodes including a second metal electrode and a third metal electrode, the first metal electrode located between the second metal electrode and the third metal electrode such that the second metal electrode is physically separated from the third metal electrode; a first set of touch electrodes including a first touch electrode that is connected to the first metal electrode; a second set of touch electrodes including a second touch electrode and a third touch electrode, the second touch electrode connected to the second metal electrode and the third touch electrode connected to the third metal electrode; an insulation film having a plurality of contact holes; and a connection electrode electrically connecting the second metal electrode to the third metal electrode through the plurality of contact holes.
Abstract:
An organic light-emitting display device includes an anti-peeling pattern. An organic light-emitting element including a pixel electrode, an organic light-emitting layer, and a common electrode is disposed on a substrate. A bank layer is disposed on the pixel electrode so as to expose at least a portion of the pixel electrode. The anti-peeling pattern having at least one delta-shaped space is disposed on the bank layer. The anti-peeling pattern, disposed on the bank layer, minimizes peeling of the encapsulation layer that can be caused by either compressive or tensile stress generated by bending in a flexing environment in which the organic light-emitting display device is used.
Abstract:
Provided are a flexible thin film transistor substrate and a flexible organic light emitting display device. The flexible thin film transistor substrate includes: a flexible substrate including at least one thin film transistor (TFT) area and having flexibility, an active layer disposed in the TFT area on the flexible substrate, a gate insulation layer disposed on the active layer, a gate electrode overlapping with the active layer on the gate insulation layer, an insulating interlayer disposed on the gate electrode, and a source electrode and a drain electrode disposed on the insulating interlayer and connected with the active layer, respectively. The gate insulation layer or the insulating interlayer includes at least one hole pattern configured to reduce bending stress.