Abstract:
A flexible organic electroluminescent device and a method for fabricating the same includes a substrate defined with a display area including a plurality of pixel regions and a non-display area at the outside thereof; a switching thin film transistor and a drive thin film transistor formed at the each pixel region on the substrate; an organic insulating layer deposited on the substrate including the switching thin film transistor and drive thin film transistor to expose a drain electrode of the drive thin film transistor; a first electrode formed in each pixel region on the inorganic insulating layer, and connected to the drain electrode of the drive thin film transistor; banks formed around each pixel region on the substrate including the first electrode and separated from one another; an organic light emitting layer separately formed for each pixel region on the first electrode; a second electrode formed on an entire surface of the display area on the organic light emitting layer; and an organic layer formed on an entire surface of the substrate including the second electrode.
Abstract:
A transparent display device can include a display area including a transmissive area and a non-transmissive area, a plurality of emission areas disposed in the non-transmissive area, the plurality of emission areas being configured to emit light, and at least one first optical pattern disposed in the transmissive area.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.
Abstract:
An organic light-emitting display device and a driving method thereof. A first pixel of the plurality of pixels is initialized in response to a first gate signal of the gate signals, receives a first data signal input thereto in response to a second gate signal generated after the first gate signal, and is controlled by the emission control signal to emit light in response to the first data signal. A second pixel of the plurality of pixels is initialized in response to the second gate signal, receives a second data signal input thereto in response to a third gate signal generated after the second gate signal, and is controlled by the emission control signal to emit light in response to the second data signal. The size of a non-display area is reduced.
Abstract:
A flexible organic electroluminescent device and a method for fabricating the same includes a substrate defined with a display area including a plurality of pixel regions and a non-display area at the outside thereof; a switching thin film transistor and a drive thin film transistor formed at the each pixel region on the substrate; an organic insulating layer deposited on the substrate including the switching thin film transistor and drive thin film transistor to expose a drain electrode of the drive thin film transistor; a first electrode formed in each pixel region on the inorganic insulating layer, and connected to the drain electrode of the drive thin film transistor; banks formed around each pixel region on the substrate including the first electrode and separated from one another; an organic light emitting layer separately formed for each pixel region on the first electrode; a second electrode formed on an entire surface of the display area on the organic light emitting layer; and an organic layer formed on an entire surface of the substrate including the second electrode.
Abstract:
Disclosed are an organic light emitting diode device, and a method for fabricating the same. The organic light emitting diode device comprises a non-active area formed outside an active area of a substrate; a switching thin film transistor and a driving thin film transistor at each of the pixel regions; a planarization layer on the substrate; a first electrode on the planarization layer; a bank formed in the non-active area outside each pixel region; an organic light emitting layer on the first electrode; a second electrode on an entire surface of the substrate; a first passivation layer on the substrate; an organic layer on the first passivation layer; a second passivation layer on the organic layer and the first passivation layer; a barrier film disposed to face the substrate.
Abstract:
A display apparatus is disclosed. The display apparatus comprises a display panel including a first area and a second area extending from a first side of the first area, and a plurality of flexible films connected to the display panel. A distance between a first end and a second end of the first area is less than a distance between a first end and a second end of the second area and the plurality of flexible films are connected to the first end of the first area and the first end of the second area.
Abstract:
A flexible organic electroluminescent device and a method for fabricating the same includes a substrate defined with a display area including a plurality of pixel regions and a non-display area at the outside thereof; a switching thin film transistor and a drive thin film transistor formed at the each pixel region on the substrate; an organic insulating layer deposited on the substrate including the switching thin film transistor and drive thin film transistor to expose a drain electrode of the drive thin film transistor; a first electrode formed in each pixel region on the inorganic insulating layer, and connected to the drain electrode of the drive thin film transistor; banks formed around each pixel region on the substrate including the first electrode and separated from one another; an organic light emitting layer separately formed for each pixel region on the first electrode; a second electrode formed on an entire surface of the display area on the organic light emitting layer; and an organic layer formed on an entire surface of the substrate including the second electrode.
Abstract:
A display apparatus includes a first area including a first display area having a first size, a second area including a second display area having a second size, a low potential line at least partially surrounding outer peripheries of the first area and the second area and between the first area and the second area in a plan view of the display apparatus, the low potential line supplying a low potential power voltage to a pixel circuit included in each of the first area and the second area, and a cover glass on the first area, the low potential line, and the second area.
Abstract:
A display device includes a display panel including an active area having a plurality of subpixels and a pad area disposed along the active area; a gate driver in the pad area of the display panel and having a plurality of gate-in-panel circuits; a first signal line outside of the gate driver; a second signal line between the gate driver and the active area; and a plurality of dummy gate-in-panel circuits adjacent to the plurality of gate-in-panel circuits.