Abstract:
Discussed is a display device integrated with touch screen. The display device includes a plurality of touch groups into which a plurality of touch electrodes are physically divided, a plurality of first driving electrode lines connected to a plurality of driving electrodes of a first touch group of the touch groups, a plurality of second driving electrode lines connected to a plurality of driving electrodes of a second touch group of the touch groups, a plurality of first receiving electrode lines connected to a plurality of receiving electrodes of the first touch group, a plurality of second receiving electrode lines connected to a plurality of receiving electrodes of the second touch group, a touch driving IC configured to supply a touch driving signal to the first and second driving electrode lines, and a touch sensing IC configured to sense touch signals of the first and second receiving electrode lines.
Abstract:
In a touch display device, a controller generates a touch sync signal for controlling timing of a touch sensing period and a display period in each of a plurality of frames. A touch panel has a plurality of touch electrodes in a display area to generate touch sensing signals indicating whether or not a touch occurs during the touch sensing period. A touch sensing circuit supplies a touch drive signal to the plurality of touch electrodes during the touch sensing period and detects if the touch occurred based on the touch sensing signals received from the plurality of touch electrodes. A touch assistance line surrounds the display area and is disposed in the non-display area of the touch panel. A touch assistance signal supply circuit generates a touch assistance signal on the touch assistance line. The touch assistance signal mimics the touch drive signal during the touch sensing period.
Abstract:
In a touch display device, a controller generates a touch sync signal for controlling timing of a touch sensing period and a display period in each of a plurality of frames. A touch panel has a plurality of touch electrodes in a display area to generate touch sensing signals indicating whether or not a touch occurs during the touch sensing period. A touch sensing circuit supplies a touch drive signal to the plurality of touch electrodes during the touch sensing period and detects if the touch occurred based on the touch sensing signals received from the plurality of touch electrodes. A touch assistance line surrounds the display area and is disposed in the non-display area of the touch panel. A touch assistance signal supply circuit generates a touch assistance signal on the touch assistance line. The touch assistance signal mimics the touch drive signal during the touch sensing period.
Abstract:
Disclosed are a display device and method of driving the same in which a display panel may include a plurality of gate lines, a plurality of data lines and a touch panel, the touch panel including a first touch electrode group where s number of horizontal electrodes and k (which is less than s) number of longitudinal electrodes cross each other; and a touch sensing unit that during a first period of a plurality of touch sensing periods included in a one frame period, determines whether at least one of the s number of horizontal electrodes is touched based on a plurality of sensing signals received from at least two of the s number of horizontal electrodes, and during a second period of the plurality of touch sensing periods, determines whether at least one of the s number of horizontal electrodes, which is either the same or different from the at least one of the s number of horizontal electrodes determined during the first period, is touched based on one or more sensing signals received from at least one of the k number of longitudinal electrodes.
Abstract:
A liquid crystal display device is disclosed, which may compensate for a common voltage by reflecting all of noises by which a plurality of common electrodes are affected. The liquid crystal display device comprises a liquid crystal display panel including a plurality of data lines, a plurality of gate lines crossing the data lines, and a plurality of pixels provided at crossing regions of the data lines and the gate lines and including pixel electrodes and common electrodes to which a common voltage is supplied, wherein a common electrode of the common electrodes is shared by two or more of the plurality of pixels. The liquid crystal display panel also includes a plurality of feedback lines that overlap the common electrodes, the plurality of feedback lines receiving a variation of the common voltage that is reflected by the common electrodes onto the plurality of feedback lines.
Abstract:
Disclosed are a driver IC and a display apparatus including the same, which supply a touch auxiliary signal, having the same phase and potential difference as those of a touch signal supplied to a touch electrode which is also used as a common electrode, to a plurality of supply lines disposed in a non-display area during a touch sensing period. The driver IC includes a common voltage supply element, a touch sensing unit, and a common voltage switching unit. The common voltage switching unit connects the common voltage supply element to a plurality of touch electrode lines connected to the plurality of touch electrodes during an image display period, and during a touch sensing period, the common voltage switching unit connects the plurality of touch electrode lines to the touch sensing unit.
Abstract:
A disclosed display device includes a touch panel including s number of receiving electrodes and k number of driving electrodes which are formed to intersect the receiving electrodes, k being less than s and larger than 2, the touch panel provided in an in-cell type. The display device further includes a touch sensing unit configured to respectively supply a first driving voltage and a second driving voltage to an nth driving electrode and an (n+1)th driving electrode, which are adjacent to each other among the driving electrodes, to determine whether the nth driving electrode is touched, n being a natural number which is more than one and less than k, the touch sensing unit further configured to respectively supply the first driving voltage and the second driving voltage to a kth driving electrode and a (k−1)th driving electrode to determine whether the kth driving electrode is touched.
Abstract:
Disclosed are a driver IC and a display apparatus including the same, which supply a touch auxiliary signal, having the same phase and potential difference as those of a touch signal supplied to a touch electrode which is also used as a common electrode, to a plurality of supply lines disposed in a non-display area during a touch sensing period. The driver IC includes a common voltage supply element, a touch sensing unit, and a common voltage switching unit. The common voltage switching unit connects the common voltage supply element to a plurality of touch electrode lines connected to the plurality of touch electrodes during an image display period, and during a touch sensing period, the common voltage switching unit connects the plurality of touch electrode lines to the touch sensing unit.
Abstract:
In a touch display device, a controller generates a touch sync signal for controlling timing of a touch sensing period and a display period in each of a plurality of frames. A touch panel has a plurality of touch electrodes in a display area to generate touch sensing signals indicating whether or not a touch occurs during the touch sensing period. A touch sensing circuit supplies a touch drive signal to the plurality of touch electrodes during the touch sensing period and detects if the touch occurred based on the touch sensing signals received from the plurality of touch electrodes. A touch assistance line surrounds the display area and is disposed in the non-display area of the touch panel. A touch assistance signal supply circuit generates a touch assistance signal on the touch assistance line. The touch assistance signal mimics the touch drive signal during the touch sensing period.