Abstract:
Disclosed is a shift register capable of preventing charges supplied to a Q node to turn on a pull-up transistor for outputting a scan pulse from leaking outwards. The shift register includes a plurality of stages connected to gate lines formed at a panel. Each stage includes a scan signal generator for generating a scan pulse or a turn-off signal, a scan pulse controller for generating a Q-node control signal for generation of the scan pulse, a Q-node adjuster for preventing the Q-node control signal from leaking outwards during supply of the Q-node control signal to a Q-node connected to the scan signal generator, and a turn-off signal controller for transferring a Qb-node control signal for generation of the turn-off signal to the scan signal generator via a Qb-node when no scan pulse is generated from the scan signal generator.
Abstract:
A shift register includes a plurality of stages each outputting k composite pulses each including an A-scan pulse and a B-scan pulse. At least one stage includes an A-sub-stage for controlling a voltage at an A-set node and a voltage at at least one A-reset node in response to an external A-control signal and generating an A-carry pulse based on the voltage at the A-set node. The voltage at the at least one A-reset node and any one A-clock pulse, at least one B-sub-stage for controlling a voltage at a B-set node and a voltage at at least one B-reset node in response to an external B-control signal and generating a B-carry pulse, and a scan output controller for generating k A-scan pulses and k B-scan pulses and outputting one of the A-scan pulses and one of the B-scan pulses corresponding to each other as one composite pulse.
Abstract:
Discussed are a built-in gate driver capable of improving output characteristics of the gate driver by reducing load of clock lines and a display device using the same. The built-in gate driver can include a shift register, a first clock group and a second clock group located in a non-display region of a display panel. The shift register includes a plurality of stages for individually driving gate lines of a display region. The first clock group includes clock lines arranged at a first side of the shift register. The second clock group includes clock lines arranged at a second side of the shift register. Each of the clock lines includes a main line and a branch line branched from the main line and connected to a corresponding stage. A branch line belonging to a corresponding clock group of any one of the first and second clock groups does not overlap a main line belonging to the other clock group.
Abstract:
Disclosed is a shift register which prevents current leakage and degradation of an oxide transistor due to light to improve output stability, and a display device using the same. The shift register includes a plurality of stages, and each stage includes a transmission line unit including a plurality of clock lines to supply a plurality of clock signals and a plurality of power lines to supply a plurality of voltages, a transistor unit including a plurality of transistors, and a light-shielding layer overlapping at least one transistor of the transistor unit so as to block light.
Abstract:
A shift register capable of preventing leakage current and a display device using the same are disclosed. The shift register includes a plurality of stages. Each stage includes a set unit setting a Q node in response to a start pulse or previous output, an inverter for controlling a QB node to have a logic state opposite to that of the Q node, an output unit for outputting any one input clock or a gate off voltage in response to the logic states of the Q and QB nodes, a reset unit including a reset switching element, the reset switching element resetting the Q node with a first reset voltage in response to a reset pulse or next output, and a noise cleaner resetting the Q node with a second reset voltage in response to the QB node. When the reset switching element is turned off, the first reset voltage is greater than a voltage of the reset pulse or the next output for the current.
Abstract:
A shift register includes a plurality of stages each for outputting k composite pulses each including an A-scan pulse and a B-scan pulse. At least one stage includes k A-sub-stages each for controlling a voltage at an A-set node and a voltage at least one A-reset node in response to an external A-control signal and generating an A-carry pulse based on the voltage at the A-set node, the voltage at the at least one A-reset node and any one A-clock pulse, a B-sub-stage for controlling a voltage at a B-set node and a voltage at least one B-reset node in response to an external B-control signal and generating a B-carry pulse, and a scan output controller for generating k A-scan pulses and k B-scan pulses and outputting one of the A-scan pulses and one of the B-scan pulses corresponding to each other as one composite pulse.
Abstract:
Discussed herein is a shift register which is capable of stabilizing an output thereof. The shift register includes a plurality of stages for sequentially outputting scan pulses in such a manner that high durations of the scan pulses partially overlap with each other. Each of the stages includes a node controller for controlling a charging duration of a set node, and an output unit for outputting a corresponding one of the scan pulses through an output terminal for the charging duration of the set node.