Abstract:
An electronic device is disclosed. The electronic device according to the present disclosure includes a body, a neck formed at one side of the body, and a head formed on the neck, wherein the head comprises: a circular part connected to the neck; a protrusion part protruding from one side of the circular part and having a curvature that is greater than a curvature of the circular part; a speaker hole formed at at least one of the circular part and the protrusion part; and a band part formed at the periphery of the speaker hole, and the thickness of the band part may be greater than the thickness of the circular part or the protrusion part around the band part.
Abstract:
Provided is a linear compressor. The linear compressor includes a filter bracket seated on a gas inflow part passing through a cylinder and a filter assembly including a filter member seated on the filter bracket.
Abstract:
A linear compressor is provided that may include a shell including a suction inlet, a cylinder provided in the shell to define a compression space for a refrigerant, a piston reciprocated in an axial direction within the cylinder, a discharge valve provided at a first side of the cylinder to selectively discharge the refrigerant compressed in the compression space, at least one nozzle, through which at least a portion of the refrigerant discharged through the discharge valve flows, the at least one nozzle being disposed in the cylinder, and at least one expansion portion that extends from the at least one nozzle to an inner circumferential surface of the cylinder, the at least one expansion portion having a flow cross-section area greater than a flow cross-section area of the at least one nozzle.
Abstract:
A linear compressor and a method of manufacturing a linear compressor are provided. The linear compressor may include a shell including a suction inlet, a cylinder having a compression space, in which a refrigerant suctioned in through the suction inlet may be compressed, a piston reciprocated within the cylinder, a first surface treatment disposed on an outer surface of the piston, the first surface treatment having a first hardness value, which is a measured hardness value, and a buffer disposed between the outer surface of the piston and the first surface treatment. The buffer may have a second hardness value, which is a measured hardness value. The first hardness value of the first surface treatment may be greater than the second hardness value of the buffer.
Abstract:
A linear compressor includes a cylinder that defines a compression space of a refrigerant and has a cylindrical shape, and a piston disposed in the cylinder and reciprocating along an axis of the cylinder. The cylinder includes a gas inlet on an outer circumferential surface and a supply port radially passing through the cylinder and communicating with the gas inlet. The gas inlet includes a first gas inlet and a second gas inlet disposed behind the first gas inlet, and the supply port includes a first supply port communicating with the first gas inlet and a second supply port disposed behind the first supply port and communicating with the second gas inlet. A flow rate passing through the first supply port is different from a flow rate passing through the second supply port.
Abstract:
A compressor and a method of manufacturing the same are disclosed. The compressor includes a piston having a cylindrical shape and having formed therein a suction space, in which refrigerant gas is sucked, and a cylinder having, as a space formed therein, formed therein a compression space, in which refrigerant gas is compressed, by reciprocation of the piston in an axial direction. A gas inflow passage having one side communicating with a gas pocket outside the cylinder and the other side communicating with a space formed in the cylinder is formed in the cylinder, and the piston includes a plurality of fine irregularities formed in an outer circumferential surface of a guide facing the cylinder and provided at a position corresponding to the gas inflow passage.
Abstract:
Disclosed herein is a linear compressor. The linear compressor includes a piston, a cylinder, a frame, a first bearing gap formed between an inner circumferential surface of the frame and the outer circumferential surface of the cylinder, a second bearing gap formed between an inner circumferential surface of the cylinder and the outer circumferential surface of the piston, a bearing inflow passage and a bearing side passage formed in the cylinder such that fluid flows from the first bearing gap to the second bearing gap.
Abstract:
A portable sound device having a main body having an earbud holder, an earbud detachably mounted in the earbud holder for outputting a sound, a main board located in the main body, the main body being connected to the earbud via a sound cable, and a rotary module mounted in the main body is provided. The rotary module includes a shaft fixed to the main body, a bobbin rotatable about the shaft, the sound cable being wound around the outer circumferential surface of the bobbin, a reel spring providing rotary force to the bobbin, a track having a concave part, the track being rotated with the bobbin, a guide plate having a guide slot, through which the shaft extends, the guide slot extending in one direction, and a bump protruding from the guide plate so as to be inserted into the track.
Abstract:
A reciprocating compressor is provided. Bearing holes of a fluid bearing of the compressor may be positioned to correspond to a full reciprocating region of a piston, to reduce/eliminate frictional loss and/or abrasion between a cylinder and the piston. The bearing holes may be concentrated at certain regions of the cylinder to stably support the piston through a full reciprocating range. Compression coil springs may maintain concentric alignment of the cylinder and the piston. Gas through holes may be radially formed at the piston to lower a pressure of a bearing space and allow refrigerant to be smoothly introduced into the bearing space through a gas pocket A casing of the compressor may include an outer shell and an inner shell to attenuate vibration generated due to friction generated by operation of the reciprocating compressor.
Abstract:
A linear compressor and a method of manufacturing a linear compressor are provided. The linear compressor may include a shell including a suction inlet, a cylinder having a compression space, in which a refrigerant suctioned in through the suction inlet may be compressed, a piston reciprocated within the cylinder, a first surface treatment disposed on an outer surface of the piston, the first surface treatment having a first hardness value, which is a measured hardness value, and a buffer disposed between the outer surface of the piston and the first surface treatment. The buffer may have a second hardness value, which is a measured hardness value. The first hardness value of the first surface treatment may be greater than the second hardness value of the buffer.