Abstract:
A driving device includes a plurality of blocks arranged in sequence, each of the blocks includes ninth switching elements connected to received a start pulse, four clock signals, and two source voltages. The switching elements are arranged to output the four clock signals in sequence and to alternatively output the four clock signals in a reverse sequence.
Abstract:
A flat panel display device for a small module application is disclosed in the present invention. The flat display device includes a DC/DC converter supplying a DC voltage, a timing controller connected to the DC/DC converter, the timing controller outputting a gate control signal and a data control signal, a first level shifter at the circuit unit amplifying the gate control signal and the data control signal for the timing controller, a second level shifter at the display panel amplifying the gate control signal and the data control signal amplified by the first level shifter, a plurality of gate lines and data lines crossing one another, a gate driver connected to a first end of each of the gate lines, the gate driver outputting a scan signal according to the gate control signal amplified by the second level shifter, and a data driver connected to a second end of each of the data lines, the data driver outputting a gray level voltage according to the data control signal amplified by the second level shifter.
Abstract:
A bi-directional driving circuit of a flat panel display device and method for driving the same is disclosed in the present invention. The bi-directional driving circuit of a flat panel display device having a plurality of blocks driven by a start pulse Vst, first to fourth clock signals having different phases CLK1, CLK2, CLK3, and CLK4, and first and second power source voltages Vdd and Vss, each block includes a shift register comprising a first control part charging the start pulse Vst or an output signal of a previous block to a first node Q according to either one of the first to fourth clock signals or a second node QB, a second control part controlling the second node QB according to the start pulse Vst, either the output signal of the previous block or an output signal of the next block, and one of the first to fourth clock signals, a third control part charging the start pulse Vst or the output signal of the next block to the first node Q according to either one of the first to fourth clock signals, or controlling the second node QB, and a buffer outputting one of the first to fourth clock signals as a shift pulse according to the first and second nodes Q and QB; and a level shifter shifting a level of the shift pulse output from the shift register in each block, and outputting the shifted level.
Abstract:
A liquid crystal display device that is capable of preventing metal wires from being corroded during its long-term use under the high temperature and high humidity circumference. In the device, a pad is positioned at a non-display area of a substrate to be connected to at least one of a gate line and a data line. A driving circuit responds to an electrical signal from the pad to drive a liquid crystal pixel cell provided within said non-display area of the substrate. A semiconductor pattern is opposed to the driving circuit with having the pad therebetween to be connected between the pad and the driving circuit.