Abstract:
A valve for compressed gas, comprising a body extending longitudinally, with a gas inlet at a lower end of the body, a gas outlet and a gas passage fluidly interconnecting the gas inlet and the gas outlet; a shut-off device housed in the body and configured for selectively shutting-off and opening the gas passage; a lever pivotally mounted on the body, at an upper end of the body, and configured for actuating the shut-off device; a hook pivotally mounted on the lever for engaging with a counter-shape on the body and thereby holding the lever in a folded position along the body; wherein the upper end of the body comprises a cylindrical wall delimiting an upper bore, the counter-shape being an upper edge of the cylindrical wall.
Abstract:
The invention is directed to a method for improving the mechanical behavior of a metallic body (4) comprising an internal volume for a fluid and at least one threaded connecting port (6, 8) to said internal volume, the method comprising a step of treatment by autofrettage of the internal volume by applying a pressure to a liquid inside said volume. The autofrettage step comprises closing the internal volume by screwing a plug (28) to each the at least one threaded connecting port (8), so that the thread(s) of said port(s) is/are also subject to the autofrettage treatment. The invention is also directed to a body (4) resulting from such a treatment, with compressive stresses at the root of one of the most carrying turns of the thread of each of the connecting ports. The compressive stresses improve the fatigue behavior of the body.
Abstract:
The invention is directed to a method for improving the fatigue behavior of the body (2) of a gas valve, the body comprising at least two bores (4, 10) and at least one bore intersection (20) defining an internal volume; wherein the method comprises the following step: subjecting the internal volume to an autofrettage by applying a pressure of comprised between 100 MPa and 500 MPa by means of a liquid. 10. The invention is also directed to a gas valve body (2) comprising at least two bores (4, 10) and at least one bore intersection (20) defining an internal volume with an internal wall; wherein the internal wall is treated by autofrettage resulting in compressive stresses at the intersection or at least one of the intersections.
Abstract:
A device for regulating the pressure of a compressed gas, comprising a body with a gas inlet, a gas outlet and a gas passage; a mobile element biased by a main spring and carrying a shutter cooperating with a seat in the gas passage, the shutter and the seat forming a regulating valve, a shut-off valve with a shutter and a seat in the gas passage upstream of the regulating valve; an actuation assembly of the shut-off valve; wherein the shutter of the shut-off valve comprises a stem extending through the mobile element and the shutter of the element, for cooperating with the actuation assembly located in front of the element.
Abstract:
The invention is directed to a method for improving the mechanical behavior of a metallic body (4) comprising an internal volume for a fluid and at least one threaded connecting port (6, 8) to said internal volume, the method comprising a step of treatment by autofrettage of the internal volume by applying a pressure to a liquid inside said volume. The autofrettage step comprises closing the internal volume by screwing a plug (28) to each the at least one threaded connecting port (8), so that the thread(s) of said port(s) is/are also subject to the autofrettage treatment. The invention is also directed to a body (4) resulting from such a treatment, with compressive stresses at the root of one of the most carrying turns of the thread of each of the connecting ports. The compressive stresses improve the fatigue behavior of the body.
Abstract:
A valve for pressurized gas or chemical agent. The valve comprises: a body with: an inlet, an outlet, and a passage which connects the inlet with the outlet and which includes a seat]. The valve further comprises a sliding piston able to engage with the seat in order to close the passage and a telescopic extension sliding against the passage in order to guide the piston in the passage at least between the open position and the closed position. The pressure difference between opposite faces of the piston pulls away the piston and the telescopic extension from the seat in order to open the passage, the passage remaining closed under pressure equilibrium. Additionally, a fire extinguishing system.
Abstract:
The invention is directed to a method for improving the fatigue behavior of the body (2) of a gas valve, the body comprising at least two bores (4, 10) and at least one bore intersection (20) defining an internal volume; wherein the method comprises the following step: subjecting the internal volume to an autofrettage by applying a pressure of comprised between 100 MPa and 500 MPa by means of a liquid. 10. The invention is also directed to a gas valve body (2) comprising at least two bores (4, 10) and at least one bore intersection (20) defining an internal volume with an internal wall; wherein the internal wall is treated by autofrettage resulting in compressive stresses at the intersection or at least one of the intersections.
Abstract:
A valve for pressurized gas or chemical agent. The valve comprises: a body with: an inlet, an outlet, and a passage which connects the inlet with the outlet and which includes a seat]. The valve further comprises a sliding piston able to engage with the seat in order to close the passage and a telescopic extension sliding against the passage in order to guide the piston in the passage at least between the open position and the closed position. The pressure difference between opposite faces of the piston pulls away the piston and the telescopic extension from the seat in order to open the passage, the passage remaining closed under pressure equilibrium. Additionally, a fire extinguishing system.