摘要:
A patient support (40) has lower sections (50a, 50b) of first and second gradient coil assembly portions (42a, 42b) affixed thereto. Upper sections (52a, 52b) of the gradient coil assembly portions are selectively removable from the lower gradient coil assembly sections. The gradient coil assembly sections are mounted such that an interstitial gap is defined therebetween. The gradient coil assembly portions are configured to fit snugly around the patient's torso below the shoulders and around the patient's head, but are too small in diameter to pass around the patient's shoulders. The radio frequency coil (44) has a lower portion (60) disposed below the patient's shoulders and an upper portion (62) removably positionable above the patient's shoulders. The gap between the two gradient coil assembly portions is preferably between 1/2 and 3/4 of a diameter of the gradient coil portions. An invasive medical instrument, such as a biopsy gun (100), is mounted to the patient support adjacent the gap between the gradient coil portions for performing invasive medical procedures on a portion of the patient through the gap between the gradient coil portions.
摘要:
A toroidal housing (18), such as a vacuum dewar, contains magnets (10, 12) for generating a temporally constant magnetic field through a central bore (14). Gradient coils (32, 42) are mounted around the bore defining a space therebetween. A radio frequency shield (78) is disposed radially inward from the gradient coils. Inside the radio frequency shield, an inner shimming assembly (60) includes a dielectric cylinder (62) having annular grooves around its periphery. Segmented ferrous material (66) is arranged in annular rings in the grooves. The ferrous material is segmented into small pieces electrically insulated from each other to limit radio frequency and gradient frequency eddy currents. A radio frequency coil (70) is mounted inside of the annular ferrous shims (66). Preferably, additional shim trays (50) which carry shims (54) are mounted in the space between the primary and secondary gradient coils.
摘要:
A superconducting magnetic imaging apparatus includes a vacuum vessel (16) having a central helium reservoir (20) in which superconducting magnetic coil windings (12) are maintained at a superconducting temperature. The vacuum vessel defines an internal bore (22) within which a self-shielded gradient coil assembly (26) and an RF coil (30) are received. The self-shielded coil assembly includes a single former (50) which defines an imaging region (14) within which an imaged portion of a subject is received. Primary x, y, and z-gradient coils (72-76) are positioned over an RF ground screen (70) that is bonded to the former (50). A number of comb-like spacers (84) extend from the former to supporting shield x, y, and z-gradient coils (110-114). The comb-like spacers define passages between the primary and secondary gradient coils which receive inner and outer cooling tubes (90, 92) and shim tray molds (108). The fully assembled gradient coil assembly is potted to form a unitary structure in a single potting step. The shim tray molds are subsequently removed to define channels or pockets suitable for receiving shim trays (118).
摘要:
A magnetic resonance imaging apparatus has a main magnet (20) having opposite first and second poles (22, 24) arranged facing one another to define a subject receiving region (14) therebetween. The main magnet (20) generates a main magnetic field (12) within the subject receiving region (14). The main magnetic field (12) has non-uniformities and radial components at the periphery of the subject receiving region (14). A radio frequency coil (74) is disposed about the subject receiving region (14) to transmit radio frequency signals into the subject receiving region (14) and a receiver receives radio frequency signals therefrom. A shielded thrust balanced bi-planar gradient coil assembly (50) is included. The shielded thrust balanced bi-planar gradient coil assembly (50) has at least one pair of windings for generating substantially linear magnetic gradients across the subject receiving region (14). Each pair of windings includes a first set of windings (52) and a second set of windings (54), and each set of windings includes at least a primary winding (56) and a secondary winding (58). The first and second set of windings (52, 54) are positioned on opposite sides of the subject receiving region (14) near the first and second pole pieces (22, 24). The secondary windings (58) are positioned between their respective primary windings (56) and their associated pole pieces (22, 24). The first and second set of windings (52, 54) are arranged such that the net thrust forces acting thereon generated by interaction between the main magnetic field (12) and electrical current pulses through the windings are substantially zero.
摘要:
Methods of designing an active shield for substantially zeroing an electro-magnetic field on one side of a predetermined boundary in open magnetic resonance imaging systems and in open electric systems are provided. The methods include defining a finite length geometry for a primary structure which, in the case of zeroing a magnetic field, carries a first current distribution on its surface. A finite length geometry is also defined for a secondary structure which, in the case of zeroing a magnetic field, carries a second current distribution on its surface. In the case of zeroing an electric field, the current distributions are replaced with charge distributions. A total magnetic or electric field resulting from a combination of the first and second current or charge distributions respectively is constrained such that normal components (in the magnetic field case) or tangential components (in the electric field case) thereof substantially vanish at the surface of one of the primary and secondary structures. The first current or charge distribution is constrained to the surface of the primary structure, and the second current or charge distribution is constrained to the surface of the secondary structure. The first and second current or charge distributions are then calculated concurrently allowing both the first and second current or charge distributions to vary while observing the constraints such that a predetermined magnetic or electric field is achieved in a first region and a magnetic or electric field on one side of a predetermined boundary is substantially zeroed.
摘要:
A localized coil (30) is disposed in the temporally constant magnetic field of a magnetic resonance imaging system. The localized coil is designed in five steps: a static problem formulation step, a static current solution step, a discretization step, a current loop connection step, and a high frequency solution step. One radio frequency coil designed by this process to be carried on a circularly cylindrical former includes two coil sections (60, 62) disposed on opposite sides of the dielectric former. Each of the two coil sections includes a pair of inner loops (64.sub.1, 64.sub.2) disposed symmetrically relative to a z=0 plane of symmetry and a second pair of loops (68.sub.1, 68.sub.2) also disposed symmetrically about the plane of symmetry. To raise self-resonance frequency, the inner and outer loops are connected in parallel. The resonance frequency is fine-tuned with reactive elements (66.sub.1, 66.sub.2). To ensure balanced current flow between the two coil portions, the two portions are connected (78) in parallel.
摘要:
Superconducting magnets (10) generate a temporally constant magnetic field through a bore (12). The bore, hence the superconducting magnets, have a length which is relatively short compared to its diameter, a length to diameter ratio of less than 1.0 to 1.5 and preferably 1:1. A gradient coil assembly (30) is disposed around the bore for generating gradient magnetic fields across the bore. With such a relatively short bore magnet, in the region in which the gradient field coil is disposed, the main magnetic field suffers non-uniformities including radial magnetic field components. When current pulses are fed through the windings of a primary gradient coil (32) and a secondary gradient coil (34), the currents interact in an unbalanced manner with the non-uniformities and radial components of the temporally constant magnetic field, causing a net force in axial and/or transverse directions. Additional windings (62, 72) are mounted adjacent the ends of the gradient coil, carrying current in an opposite direction to z and transverse gradient windings in order to produce a counterbalancing force such that the net and counterbalancing forces substantially cancel. In this manner, the gradient coil assembly is freed from the necessity of a substantial mechanical mountings and the vibration and distortion which large net forces can cause.
摘要:
A MRI array coil includes a plurality of first coils in a receive coil array and a plurality of second coils in a transmit coil array. The receive coil array and the transmit coil array are electrically disjoint.
摘要:
A method of designing a shielded gradient coil assembly (22) for magnetic resonance imaging systems is provided. The gradient coil structure comprises two sets of primary gradient coils (60, 62) and a single set of a shielded (screening) coils (64). This configuration is suitable for MR applications utilizing a double duty gradient configuration including a high-efficiency primary coil set that enhances the performance of ultra fast MR sequencing while minimizing the dB/dt and eddy current effects, and including a low-efficiency primary coil set having a high-quality gradient field that is suitable for conventional imaging applications with inherently low dB/dt and eddy current levels. In addition, a minimum inductance/energy algorithm assists in the design of the two primary and the one secondary gradient sets.
摘要:
A partially parallel acquisition RF coil array for imaging a sample includes at least a first, a second and a third coil adapted to be arranged circumambiently about the sample and to provide both contrast data and spatial phase encoding data.