Abstract:
Automated planning, control and/or geosteering assistance for a subterranean drilling operation is performed using an analytical drilling performance model that is a function of a rock brittleness index that is correlated with a corresponding formation property metric which serves as brittleness correlate and for which applicable measurement values are available from log data pertaining to the relevant formation. Correlation between the brittleness index and the brittleness correlate is such that a particular brittleness correlate value indicates a unique corresponding brittleness index value. One embodiment of the drilling performance model expresses rate of penetration as a function of a B4 brittleness index correlated with a sonic log brittleness correlate provided by pressure-wave velocity.
Abstract:
A method may include drilling a deviated wellbore penetrating a subterranean formation according to bottom hole assembly parameters and surface parameters; collecting real-time formation data during drilling; updating a model of the subterranean formation based on the real-time formation data and deriving formation properties therefrom; collecting survey data corresponding to a location of a drill bit in the subterranean formation; deriving a target well path for the drilling based on the model of the subterranean formation; deriving a series of trajectory well paths based on the formation properties, the survey data, the bottom hole assembly parameters, and the surface parameters and uncertainties associated therewith; deriving an actual well path based on the series of trajectory well paths; deriving a deviation between the target well path and the actual well path; and adjusting the bottom hole assembly parameters and the surface parameters to maintain the deviation below a threshold.
Abstract:
A method for simulating a well system can include providing a well system model, providing a jet pump model, providing at least one calculation engine, inputting an input parameter, defining a mechanical configuration of the well system, integrating a jet pump model into a well system model, computing a solution to a model, and determining at least one production condition of a well system. A computer readable medium can have instructions stored thereon that, when executed by a processor, can cause the processor to perform a method including accessing a well system model, accessing a jet pump model, integrating the jet pump model and the well system model, computing a solution to a combined model, and determining a production condition of a well system.
Abstract:
A system for designing a casing string for an oil well, a gas well, an oil and gas well, and/or a geothermal well. The system comprises a processor, a non-transitory memory storing a casing string design, wherein the casing string design comprises at least one section of UOE-type pipe, a downhole environment simulation application stored in the non-transitory memory that, when executed by the processor determines downhole conditions based on the casing string design, wherein the downhole conditions comprise a downhole temperature, and a casing collapse strength modeling application stored in the non-transitory memory that, when executed by the processor, analyzes collapse strength of the casing string based on the downhole temperature and based on a UOE-type pipe collapse strength model and presents a collapse strength report on the casing string design based on analyzing the collapse strength of the casing string.
Abstract:
A system for designing a casing string for a well. The system comprises a processor, a non-transitory memory, a thermodynamic modeling application stored in the non-transitory memory that, when executed by the processor, models carbon dioxide (CO2) material in the well using a carbon dioxide equation of state (EoS) to determine thermodynamic properties of the CO2 material, and a downhole environment modeling application stored in the non-transitory memory that, when executed by the processor determines temperatures of and pressures at well components at each of a plurality of points of a casing string design based in part on the thermodynamic properties of the CO2 material determined by the thermodynamic modeling application, and provides the temperatures of well components and pressures in the casing string at each of the plurality of points of the casing string to a casing string strength analysis application executing on the computer system.
Abstract:
Systems, methods, and computer-readable media for an integrated and comprehensive hydraulic, environmental, and mechanical tubular design analysis workflow and simulator for complex well trajectories. An example method can include obtaining data defining a configuration of a wellbore having a complex well trajectory, one or more operations to be performed at the wellbore, and one or more loads associated with the wellbore; calculating environmental conditions associated with a set of wellbore components along the complex well trajectory based on the data defining the configuration of the wellbore, the one or more operations, and the one or more loads; calculating stress conditions associated with the set of wellbore components based on the environmental conditions and the data defining the configuration of the wellbore, the one or more operations, and the one or more loads; and presenting the environmental conditions and the stress conditions via a graphical user interface.