摘要:
A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in an integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus allows generating and loading N pseudorandom or predetermined stimuli to all the scan cells within the N clock domains in the integrated circuit or circuit assembly during the shift operation, applying an ordered sequence of capture clocks to all the scan cells within the N clock domains during the capture operation, compacting or comparing N output responses of all the scan cells for analysis during the compact/compare operation, and repeating the above process until a predetermined limiting criteria is reached. A computer-aided design (CAD) system is further developed to realize the method and synthesize the apparatus.
摘要:
A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in an integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus allows generating and loading N pseudorandom or predetermined stimuli to all the scan cells within the N clock domains in the integrated circuit or circuit assembly during the shift operation, applying an ordered sequence of capture clocks to all the scan cells within the N clock domains during the capture operation, compacting or comparing N output responses of all the scan cells for analysis during the compact/compare operation, and repeating the above process until a predetermined limiting criteria is reached. A computer-aided design (CAD) system is further developed to realize the method and synthesize the apparatus.
摘要:
A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in an integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus allows generating and loading N pseudorandom or predetermined stimuli to all the scan cells within the N clock domains in the integrated circuit or circuit assembly during the shift operation, applying an ordered sequence of capture clocks to all the scan cells within the N clock domains during the capture operation, compacting or comparing N output responses of all the scan cells for analysis during the compact/compare operation, and repeating the above process until a predetermined limiting criteria is reached. A computer-aided design (CAD) system is further developed to realize the method and synthesize the apparatus.
摘要:
A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in an integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus allows generating and loading N pseudorandom or predetermined stimuli to all the scan cells within the N clock domains in the integrated circuit or circuit assembly during the shift operation, applying an ordered sequence of capture clocks to all the scan cells within the N clock domains during the capture operation, compacting or comparing N output responses of all the scan cells for analysis during the compact/compare operation, and repeating the above process until a predetermined limiting criteria is reached. A computer-aided design (CAD) system is further developed to realize the method and synthesize the apparatus.
摘要:
A method and apparatus for inserting design-for-debug (DFD) circuitries in an integrated circuit to debug or diagnose DFT modules, including scan cores, memory BIST (built-in self-test) cores, logic BIST cores, and functional cores. The invention further comprises using a DFD controller for executing a plurality of DFD commands to debug or diagnosis the DFT modules embedded with the DFD circuitries. When used alone or combined together, these DFD commands will detect or locate physical failures in the DFT modules in the integrated circuit on an evaluation board or system using a low-cost DFT debugger. A computer-aided design (CAD) method is further developed to synthesize the DFD controller and DFD circuitries according to the IEEE 1149.1 Boundary-scan Std. The DFD controller supports, but is not limited to, the following DFD commands: RUN_SCAN, RUN_MBIST, RUN_LBIST, DBG_SCAN, DBG_MBIST, DBG_LBIST, DBG_FUNCTION, SELECT, SHIFT, SHIFT_CHAIN, CAPTURE, RESET, BREAK, RUN, STEP, and STOP.
摘要:
A method and apparatus for debug, diagnosis, and/or yield improvement of a scan-based integrated circuit where scan chains embedded in a scan core 303 have no external access, such as the case when they are surrounded by pattern generators 302 and pattern compactors 305, using a DFT (design-for-test) technology such as Logic BIST (built-in self-test) or Compressed Scan. This invention includes an output-mask controller 301 and an output-mask network 304 to allow designers to mask off selected scan cells 311 from being compacted in a selected pattern compactor 305. This invention also includes an input chain-mask controller and an input-mask network for driving constant logic values into scan chain inputs of selected scan chains to allow designers to recover from scan chain hold time violations. Computer-aided design (CAD) methods are then proposed to automatically synthesize the output-mask controller 301, output-mask network 304, input chain-mask controller and input-mask network, and to further generate test patterns according to the synthesized scan-based integrated circuit.
摘要:
A method and apparatus for testing or diagnosing faults in a scan-based integrated circuit using a unified self-test and scan-test technique. The method and apparatus comprises using a unified test controller to ease prototype debug and production test. The unified test controller further comprises using a capture clock generator and a plurality of domain clock generators each embedded in a clock domain to perform self-test or scan-test. The capture clocks generated by the capture clock generator are used to guide at-speed or reduced-speed self-test (or scan-test) within each clock domain. The frequency of these capture clocks can be totally unrelated to those of system clocks controlling the clock domains. This unified approach allows designers to test or diagnose stuck-type and non-stuck-type faults with a low-cost DFT (design-for-test) tester or a low-cost DFT debugger. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus.
摘要:
A method and apparatus for inserting design-for-debug (DFD) circuitries in an integrated circuit to debug or diagnose DFT modules, including scan cores, memory BIST (built-in self-test) cores, logic BIST cores, and functional cores. The invention further comprises using a DFD controller for executing a plurality of DFD commands to debug or diagnosis the DFT modules embedded with the DFD circuitries. When used alone or combined together, these DFD commands will detect or locate physical failures in the DFT modules in the integrated circuit on an evaluation board or system using a low-cost DFT debugger. A computer-aided design (CAD) method is further developed to synthesize the DFD controller and DFD circuitries according to the IEEE 1149.1 Boundary-scan Std. The DFD controller supports, but is not limited to, the following DFD commands: RUN_SCAN, RUN_MBIST, RUN_LBIST, DBG_SCAN, DBG_MBIST, DBG_LBIST, DBG_FUNCTION, SELECT, SHIFT, SHIFT_CHAIN, CAPTURE, RESET, BREAK, RUN, STEP, and STOP.
摘要:
A method and apparatus for providing ordered capture clocks to detect or locate faults within N clock domains and faults crossing any two clock domains in a scan-based integrated circuit or circuit assembly in self-test or scan-test mode, where N>1 and each domain has a plurality of scan cells. The method and apparatus will apply an ordered sequence of capture clocks to all scan cells within N clock domains where one or more capture clocks must contain one or more shift clock pulses during the capture operation. A computer-aided design (CAD) method is further developed to realize the method and synthesize the apparatus. In order to further improve the circuit's fault coverage, a CAD method and apparatus are further developed to minimize the memory usage and generate scan patterns for full-scan and feed-forward partial-scan designs containing transparent storage cells, asynchronous set/reset signals, tri-state busses, and low-power gated clocks.
摘要:
A method for generating stimuli and test responses for testing faults in a scan-based integrated circuit in a selected scan-test mode or a selected self-test mode, the scan-based integrated circuit containing a plurality of scan chains, N clock domains, and C cross-clock domain blocks, each scan chain comprising multiple scan cells coupled in series, each clock domain having one capture clock, each cross-clock domain block comprising a combinational logic network. The method comprises compiling the scan-based integrated circuit into a sequential circuit model; specifying input constraints on the scan-based integrated circuit during a shift and capture operation; specifying a clock grouping to map the N clock domains into G clock domain groups, where N>G>1; transforming the sequential circuit model into an equivalent combinational circuit model according to the input constraints and the clock grouping; and generating the stimuli and test responses on the equivalent combinational circuit model according to the input constraints.