摘要:
One embodiment of the present invention provides a system that facilitates forwarding of packets in an Ethernet passive optical network (EPON), which includes a central node and at least one remote node. During operation, the system assigns a logical link identifier (LLID) to a remote node, wherein an LLID corresponds to a logical link between the central node and a remote node. The system also associates an LLID with a port of a switch within the central node, wherein the switch has a number of ports; wherein a port may be a physical port or a virtual port; and wherein the number of ports on the switch are divided into network-side ports and user-side ports. Upon receiving a downstream packet from a network-side port, the system searches a mapping table to determine whether one or more field values of the downstream packet correspond to any LLIDs or ports. If the one or more field values correspond to an LLID, the system assigns the LLID to the downstream packet and transmits the downstream packet to a remote node.
摘要:
One embodiment of the present invention provides a method for facilitating asymmetric line rates in an Ethernet passive optical network (EPON) which includes a central node and at least one remote node. During operation, the system provides a downstream code-group clock, wherein each cycle thereof corresponds to a code group transmitted from the central node to a remote node. The system also provides an upstream code-group clock, wherein each cycle thereof corresponds to a code group received at the central node from a remote node. In addition, the system provides a multi-point control protocol (MPCP) clock, wherein the frequency ratio of the MPCP clock to the downstream code-group clock is different from the frequency ratio of the MPCP clock to the upstream code-group clock, thereby allowing the downstream transmission to be performed at a faster line rate than the upstream transmission line rate.
摘要:
One embodiment of the present invention provides a system that decrypts downstream data in an Ethernet passive optical network (EPON). During operation, the system receives a data frame which is encrypted based on a remote input block and a session key, wherein the remote input block is constructed based on a remote cipher counter and a remote block counter. The system adjusts a local cipher counter based on a received checksum located in a preamble of the data frame, wherein the local cipher counter is substantially synchronized with the remote cipher counter. In addition, the system truncates the local cipher counter by discarding n least significant bits thereof. The system then constructs a local input block based on the truncated cipher counter and a local block counter for the received data frame. Next, the system decrypts the data frame based on the local input block and the session key.
摘要:
One embodiment of the present invention provides a system that facilitates registration of remote nodes in an Ethernet passive optical network (EPON). The system includes a central node and at least one remote node, wherein a number of virtual remote nodes are coupled to a common physical remote node and transmit upstream data through a common transmitter within the common physical remote node. During an initial discovery cycle, the system receives a solicitation message from the central node at a remote node, wherein the solicitation message assigns a discovery slot in which an unregistered remote node may transmit a response message to the central node for registration. The system then transmits a response message from an unregistered remote node to register within the assigned discovery slot. If multiple virtual remote nodes coupled to the common physical remote node seek registration concurrently, the system controls the transmission of response messages from these virtual remote nodes to the central node so as to avoid collisions between response messages from different remote nodes.
摘要:
One embodiment provides a system for controlling flow rate in an EPON. The system includes an OLT, an ONUs coupled to the OLT via a passive optical splitter, a switch coupled to a port located on the ONU, and a flow-control mechanism. The ONU includes one or more queues corresponding to one or more classes of Services, and one or more ports. The switch includes a plurality of UNI ports, and the switch is configured to switch one or more upstream traffic flows belonging to the one or more classes of services from the plurality of UNI ports. The flow-control mechanism is configured to set a flow rate of an upstream traffic flow of certain class of service originated from a UNI port. The flow-control mechanism sets the flow rate based on status of an ONU queue corresponding to the class of service of the upstream traffic flow.
摘要:
One embodiment provides a media access control (MAC) module facilitating operations of an Ethernet passive optical network (EPON). The MAC module includes a frame formatter configured to generate a MAC control frame. The generated MAC control frame includes at least one of: an organizationally unique identifier (OUI) field, an OUI-specific operation code (opcode) field, and a number of fields associated with the OUI-specific opcode. Transmission of the MAC control frame facilitates realization of an EPON function based on the fields associated with the OUI-specific opcode.
摘要:
One embodiment provides a media access control (MAC) module facilitating operations of an Ethernet passive optical network (EPON). The MAC module includes a frame formatter configured to generate a MAC control frame. The generated MAC control frame includes at least one of: an organizationally unique identifier (OUI) field, an OUI-specific operation code (opcode) field, and a number of fields associated with the OUI-specific opcode. Transmission of the MAC control frame facilitates realization of an EPON function based on the fields associated with the OUI-specific opcode.
摘要:
One embodiment of the present invention provides a system for mitigating Raman crosstalk between downstream data and video transmission in an Ethernet passive optical network (EPON), wherein the EPON includes an optical line terminal (OLT) and one or more optical network units (ONU's). During operation, the system transmits a data stream from the OLT to the ONU's on a first wavelength that is substantially at 1490 nm. The system also transmits a video signal stream from the OLT to the ONU's on a second wavelength that is substantially at 1550 nm. The system modifies the bit sequence for the data stream to change the power spectral distribution (PSD) for the data stream, thereby reducing power spectral content in the frequency range where significant Raman crosstalk can occur between data and video signal streams.
摘要:
One embodiment of the present invention provides a system that reduces data burst overhead in an Ethernet passive optical network which includes a central node and at least one remote node, wherein downstream data from the central node is broadcast to the remote nodes, and wherein upstream data from a remote node is transmitted to the central node in a unicast manner. During operation, the central node transmits grant messages to a number of remote nodes, wherein a grant message for a specified remote node assigns a start time and a duration of a transmission timeslot in which the specified remote node may transmit an upstream data burst. In response to the grant messages, the central node then receives a number of upstream data bursts, wherein the time gap between two consecutive upstream data bursts is less than the summation of a default laser turn-on time, a default laser turn-off time, an AGC period, and a CDR period.
摘要:
A system is provided to reduce data burst overhead in an Ethernet passive optical network. During operation, the OLT transmits grant messages to a number of ONUs, wherein a grant message assigns a start time and a duration of a transmission timeslot in which an GNU may transmit an upstream data burst. In response to the grant messages, the OLT receives a number of upstream data bursts, wherein the time gap between two consecutive upstream data bursts is less than the summation of a default laser turn-on time, a default laser turn-off time, an AGC period, and a CDR period.