Abstract:
An apparatus for taking an accurate photometric measurement of a liquid by way of forming a specimen volume of a controlled optical path length for use with photometric measurement equipment is disclosed herein. In some embodiments, the apparatus comprises a transparent body configured for displacing a volume of a fluid and at least one support element wherein the support element is configured to maintain the transparent body at a location such that specimen fluid may enter a void volume to form a specimen volume of a controlled optical path length. In some embodiments, the apparatus comprises a plurality of transparent bodies interconnected by a web such that the transparent bodies are maintained at a spacing arrangement which allows for them to be inserted into the wells of a microplate in order to create a plurality of specimen volumes of a controlled optical path length.
Abstract:
An apparatus for taking an accurate photometric measurement of a liquid by way of forming a specimen volume of a controlled optical path length for use with photometric measurement equipment is disclosed herein. In some embodiments, the apparatus comprises a transparent body configured for displacing a volume of a fluid and at least one support element wherein the support element is configured to maintain the transparent body at a location such that specimen fluid may enter a void volume to form a specimen volume of a controlled optical path length. In some embodiments, the apparatus comprises a plurality of transparent bodies interconnected by a web such that the transparent bodies are maintained at a spacing arrangement which allows for them to be inserted into the wells of a microplate in order to create a plurality of specimen volumes of a controlled optical path length.
Abstract:
Systems and methods to calculate ballistic solutions for use with a projectile launching device are disclosed herein. In some embodiments, the system includes a telescopic sight assembly for viewing a target, wherein the telescopic sight assembly comprises at least one display device for displaying information, a processor, a memory, and a data input device, wherein the system for use with a projectile launching device to calculate ballistic solutions is configured to perform passive target ranging. In some embodiments, the system includes a telescopic sight assembly for viewing a target, at least one display device for displaying information to a user within the field-of-view of the telescopic sight assembly, a processor configured to receive user input data associated with one or more actual projectile impact locations as observed by the user, a memory, and a data input device, wherein at least one display device displays a calculated projectile impact location.
Abstract:
An apparatus for taking an accurate photometric measurement of a liquid by way of forming a specimen volume of a controlled optical path length for use with photometric measurement equipment is disclosed herein. In some embodiments, the apparatus comprises a transparent body configured for displacing a volume of a fluid and at least one support element wherein the support element is configured to maintain the transparent body at a location such that specimen fluid may enter a void volume to form a specimen volume of a controlled optical path length. In some embodiments, the apparatus comprises a plurality of transparent bodies interconnected by a web such that the transparent bodies are maintained at a spacing arrangement which allows for them to be inserted into the wells of a microplate in order to create a plurality of specimen volumes of a controlled optical path length.
Abstract:
A uniform illumination lighting module is disclosed herein. In some embodiments, the uniform illumination lighting module comprises a first optical medium, a lower reflective surface disposed adjacent to a bottom boundary of the first optical medium, a concave reflective surface disposed adjacent to a side boundary of the first optical medium, and a light source, wherein at least a portion of the first optical medium is disposed between the light source and the concave reflective surface. In some embodiments, the uniform illumination lighting module further comprises a second optical medium disposed adjacent to a top boundary of the first optical medium. In preferred embodiments, the concave reflective surface is substantially parabolic and the light source is disposed at a parabolic focus of the concave reflective surface.
Abstract:
Systems and methods to calculate ballistic solutions for use with a projectile launching device are disclosed herein. In some embodiments, the system includes a telescopic sight assembly for viewing a target, wherein the telescopic sight assembly comprises at least one display device for displaying information, a processor, a memory, and a data input device, wherein the system for use with a projectile launching device to calculate ballistic solutions is configured to perform passive target ranging. In some embodiments, the system includes a telescopic sight assembly for viewing a target, at least one display device for displaying information to a user within the field-of-view of the telescopic sight assembly, a processor configured to receive user input data associated with one or more actual projectile impact locations as observed by the user, a memory, and a data input device, wherein at least one display device displays a calculated projectile impact location.
Abstract:
This disclosure relates generally to analytical instruments for measuring one or more properties of specimens or samples to be analyzed and, more particularly, to an analytical instrument with an adjustable optical path length. An analytical instrument may include a specimen support upon which a specimen may rest and a compression plate for controllably adjusting an optical path length of the specimen between the specimen support and the compression plate. In particular, a specimen may contact both the specimen support and the compression plate such that controlling a distance of the compression plate with respect to the specimen support effectively controls the optical path length of the specimen. An analytical instrument may include collimating lenses to collimate electromagnetic energy for transmission through a specimen and converging lenses for directing electromagnetic energy transmitted through the specimen into one or more sensors.
Abstract:
This disclosure relates generally to analytical instruments for measuring one or more properties of specimens or samples to be analyzed and, more particularly, to an analytical instrument with an adjustable optical path length. An analytical instrument may include a specimen support upon which a specimen may rest and a compression plate for controllably adjusting an optical path length of the specimen between the specimen support and the compression plate. In particular, a specimen may contact both the specimen support and the compression plate such that controlling a distance of the compression plate with respect to the specimen support effectively controls the optical path length of the specimen. An analytical instrument may include collimating lenses to collimate electromagnetic energy for transmission through a specimen and converging lenses for directing electromagnetic energy transmitted through the specimen into one or more sensors.
Abstract:
A uniform illumination lighting module is disclosed herein. In some embodiments, the uniform illumination lighting module comprises a first optical medium, a lower reflective surface disposed adjacent to a bottom boundary of the first optical medium, a concave reflective surface disposed adjacent to a side boundary of the first optical medium, and a light source, wherein at least a portion of the first optical medium is disposed between the light source and the concave reflective surface. In some embodiments, the uniform illumination lighting module further comprises a second optical medium disposed adjacent to a top boundary of the first optical medium. In preferred embodiments, the concave reflective surface is substantially parabolic and the light source is disposed at a parabolic focus of the concave reflective surface.
Abstract:
An apparatus for taking an accurate photometric measurement of a liquid by way of forming a specimen volume of a controlled optical path length for use with photometric measurement equipment is disclosed herein. In some embodiments, the apparatus comprises a transparent body configured for displacing a volume of a fluid and at least one support element wherein the support element is configured to maintain the transparent body at a location such that specimen fluid may enter a void volume to form a specimen volume of a controlled optical path length. In some embodiments, the apparatus comprises a plurality of transparent bodies interconnected by a web such that the transparent bodies are maintained at a spacing arrangement which allows for them to be inserted into the wells of a microplate in order to create a plurality of specimen volumes of a controlled optical path length.