Abstract:
Embodiments of the invention describe components to be utilized on the design, management and implementation of a wastewater treatment system. Said wastewater treatment system may include containers that, for example, may be consistent with ISO specifications for intermodal containers. In some embodiments, these containers act in concert to perform the same wastewater management function (e.g., the containers may function together as equalization basins). In other embodiments, said containers may each perform a separate function (e.g., some containers may function as an aeration tank while others container may function as a membrane basin), or may each perform a plurality of functions. Furthermore, said containers may form an independent wastewater treatment plant (WWTP), or may be utilized to augment a pre-existing WWTP (e.g., a WWTP according to the prior art).
Abstract:
Embodiments of the invention describe an apparatus, method, and system of wastewater treatment using modular membrane bioreactor (MBR) cartridges. In one embodiment, said method of wastewater treatment includes adjusting the number of activated modular MBR cartridges in a container and adjusting the wastewater processing rate of the container to dynamically change the throughput of a fixed-size wastewater processing container. According to one embodiment, said method can include utilizing modular MBR cartridges to provide for a fault-tolerant wastewater treatment container.
Abstract:
Embodiments describe apparatuses, systems and methods for utilizing a configurable WWTP container having a removable sensor/controller cartridge. Said removable cartridge is configured for collecting and analyzing data for any given configuration of a WWTP container, and is positioned securely separate from the treatment compartment(s) of the WWTP container. The removable cartridge is able to monitor operation conditions of the wastewater treatment compartment(s) via control logic and at least one sensor included in the removable cartridge, and change operating parameters of the container.
Abstract:
Embodiments of the invention describe an apparatus, method, and system of wastewater treatment using modular membrane bioreactor (MBR) cartridges. In one embodiment, said method of wastewater treatment includes adjusting the number of activated modular MBR cartridges in a container and adjusting the wastewater processing rate of the container to dynamically change the throughput of a fixed-size wastewater processing container. According to one embodiment, said method can include utilizing modular MBR cartridges to provide for a fault-tolerant wastewater treatment container.
Abstract:
Embodiments of the invention describe an apparatus, method, and system of wastewater treatment using modular membrane bioreactor (MBR) cartridges. In one embodiment, said method of wastewater treatment includes adjusting the number of activated modular MBR cartridges in a container and adjusting the wastewater processing rate of the container to dynamically change the throughput of a fixed-size wastewater processing container. According to one embodiment, said method can include utilizing modular MBR cartridges to provide for a fault-tolerant wastewater treatment container.
Abstract:
Embodiments of the invention describe an apparatus, method, and system of wastewater treatment using modular membrane bioreactor (MBR) cartridges. In one embodiment, said method of wastewater treatment includes adjusting the number of activated modular MBR cartridges in a container and adjusting the wastewater processing rate of the container to dynamically change the throughput of a fixed-size wastewater processing container. According to one embodiment, said method can include utilizing modular MBR cartridges to provide for a fault-tolerant wastewater treatment container.
Abstract:
Embodiments described methods, systems and apparatuses to utilize a plurality of membrane cartridges and a housing frame comprising a lightweight corrosion resistant material (e.g., non-corrosive metals, non-corrosive composites such as PVC, HDPE and FRP). The anti-corrosive properties of said frame allow of it to be re-used (e.g., with replaced MBR filters). Said MBR frame may be used in a single function or multi-function wastewater treatment container. Said container may also include a corrosion resistant liner coupled to interior portions of each of the base and side walls of the basin, an inlet to receive wastewater treatment influent into the basin, and an outlet to output wastewater treatment process material from the basin.
Abstract:
Embodiments of the invention describe components to be utilized on the design, management and implementation of a wastewater treatment system. Said wastewater treatment system may include containers that, for example, may be consistent with ISO specifications for intermodal containers. In some embodiments, these containers act in concert to perform the same wastewater management function (e.g., the containers may function together as equalization basins). In other embodiments, said containers may each perform a separate function (e.g., some containers may function as an aeration tank while others container may function as a membrane basin), or may each perform a plurality of functions. Furthermore, said containers may form an independent wastewater treatment plant (WWTP), or may be utilized to augment a pre-existing WWTP (e.g., a WWTP according to the prior art).
Abstract:
Embodiments of the invention describe components to be utilized on the design, management and implementation of a wastewater treatment system. Said wastewater treatment system may include containers that, for example, may be consistent with ISO specifications for intermodal containers. In some embodiments, these containers act in concert to perform the same wastewater management function (e.g., the containers may function together as equalization basins). In other embodiments, said containers may each perform a separate function (e.g., some containers may function as an aeration tank while others container may function as a membrane basin), or may each perform a plurality of functions. Furthermore, said containers may form an independent wastewater treatment plant (WWTP), or may be utilized to augment a pre-existing WWTP (e.g., a WWTP according to the prior art).
Abstract:
Embodiments of the invention describe an apparatus, method, and system of wastewater treatment using modular membrane bioreactor (MBR) cartridges. In one embodiment, said method of wastewater treatment includes adjusting the number of activated modular MBR cartridges in a container and adjusting the wastewater processing rate of the container to dynamically change the throughput of a fixed-size wastewater processing container. According to one embodiment, said method can include utilizing modular MBR cartridges to provide for a fault-tolerant wastewater treatment container.