摘要:
One embodiment relates to a method of identifying sensitive expressions in images for a language with a large alphabet. The method is performed using a computer and includes (i) extracting an image from a message, (ii) extracting image character-blocks (i.e. normalized pixel graphs) from the image, and (iii) predicting characters to which the character-blocks correspond using a multi-class learning model, wherein the multi-class learning model is trained using a derived list of sensitive characters which is a subset of the large alphabet. In addition, (iv) the characters may be combined into string text, and (v) the string text may be searched for matches with a predefined list of sensitive expressions. Another embodiment relates to a method of training a multi-class learning model so that the model predicts characters to which image character-blocks correspond. Other embodiments, aspects and features are also disclosed herein.
摘要:
The invention relates, in an embodiment, to a method for handling a received document. The method includes receiving a plurality of text document samples. The method includes training, using a plurality of text document samples, to obtain a set of machine learning models. Training includes generating fundamental units from the plurality of text document samples for charsets of the plurality of text document samples. Training includes extracting a subset of said fundamental units as feature lists and converting the feature lists into a set of feature vectors. Training further includes generating the set of machine learning models from the set of feature vectors. The method includes applying the set of machine learning models against a set of target document feature vectors converted from the received document. The method includes decoding the received document to obtain decoded content of the received document based on at least the first encoding scheme.
摘要:
A method for matching an image-form textual string in an image to a regular expression is disclosed. The method includes constructing a representation of the regular expression and generating a candidate string of characters from the image-form textual string. The method further includes ascertaining whether there exists a match between the image-form textual string and the regular expression, the match is deemed achieved if a probability value associated with the match is above a predetermined matching threshold.
摘要:
A machine learning model is used to identify normal scripts in a client computer. The machine learning model may be built by training using samples of known normal scripts and samples of known potentially malicious scripts and may take into account lexical and semantic characteristics of the sample scripts. The machine learning model and a feature set may be provided to the client computer by a server computer. In the client computer, the machine learning model may be used to classify a target script. The target script does not have to be evaluated for malicious content when classified as a normal script. Otherwise, when the target script is classified as a potentially malicious script, the target script may have to be further evaluated by an anti-malware or sent to a back-end system.
摘要:
The invention relates, in an embodiment, to a method for handling a received document. The method includes receiving a plurality of text document samples. The method includes training, using a plurality of text document samples, to obtain a set of machine learning models. Training includes generating fundamental units from the plurality of text document samples for charsets of the plurality of text document samples. Training includes extracting a subset of said fundamental units as feature lists and converting the feature lists into a set of feature vectors. Training further includes generating the set of machine learning models from the set of feature vectors. The method includes applying the set of machine learning models against a set of target document feature vectors converted from the received document. The method includes decoding the received document to obtain decoded content of the received document based on at least the first encoding scheme.
摘要:
A training model for malware detection is developed using common substrings extracted from known malware samples. The probability of each substring occurring within a malware family is determined and a decision tree is constructed using the substrings. An enterprise server receives indications from client machines that a particular file is suspected of being malware. The suspect file is retrieved and the decision tree is walked using the suspect file. A leaf node is reached that identifies a particular common substring, a byte offset within the suspect file at which it is likely that the common substring begins, and a probability distribution that the common substring appears in a number of malware families. A hash value of the common substring is compared (exact or approximate) against the corresponding substring in the suspect file. If positive, a result is returned to the enterprise server indicating the probability that the suspect file is a member of a particular malware family.
摘要:
The invention relates, in an embodiment, to a computer-implemented method for automatic charset detection, which includes detecting an encoding scheme of a target document. The method includes training, using a plurality of text document samples, to obtain a set of machine learning models. Training includes using a SVM (Support Vector Machine) technique to generate the set of machine learning models from feature vectors obtained from the plurality of text document samples. The method also includes applying the set of machine learning models against a set of target document feature vectors converted from the target document to detect the encoding scheme.
摘要:
A method for matching an image-form textual string in an image to a regular expression is disclosed. The method includes constructing a representation of the regular expression and generating a candidate string of characters from the image-form textual string. The method further includes ascertaining whether there exists a match between the image-form textual string and the regular expression, the match is deemed achieved if a probability value associated with the match is above a predetermined matching threshold.
摘要:
In one embodiment, a content filtering system generates a support vector machine (SVM) learning model in a server computer and provides the SVM learning model to a mobile phone for use in classifying text messages. The SVM learning model may be generated in the server computer by training a support vector machine with sample text messages that include spam and legitimate text messages. A resulting intermediate SVM learning model from the support vector machine may include a threshold value, support vectors and alpha values. The SVM learning model in the mobile phone may include the threshold value, the features, and the weights of the features. An incoming text message may be parsed for the features. The weights of features found in the incoming text message may be added and compared to the threshold value to determine whether or not the incoming text message is spam.
摘要:
In one embodiment, a content filtering system includes a feature list and a learning model. The feature list may be a subset of a dictionary that was used to train the content filtering system to identify classification (e.g., spam, phishing, porn, legitimate text messages, etc.) of text messages during a training stage. The learning model may include representative vectors, each of which represents a particular class of text messages. The learning model and the feature list may be generated in a server computer during the training stage and then subsequently provided to the mobile phone. An incoming text message in the mobile phone may be parsed for occurrences of feature words included in the feature list and then converted to an input vector. The input vector may be compared to the learning model to determine the classification of the incoming text message.