摘要:
Various systems and methods for implementing virtual ports within ring networks are disclosed. For example, one method involves allocating a logical port that corresponds to a first port and a second port and instantiating a spanning tree protocol instance. The first port and the second port are both assigned to a first ring network. The spanning tree protocol instance selectively blocks the logical port; however, the spanning tree protocol instance is unable to block the first port independently of blocking the second port. Events (e.g., link failures and recoveries) that occur within the ring network are communicated to spanning tree by transitioning the state of the logical port in response to receiving a ring protocol control packet. The spanning tree protocol instance initiates a bridge protocol data unit (BPDU) exchange from the logical port in response to a transition in the state of the logical port.
摘要:
Various systems and methods for integrating ring-protocol-compatible devices into network configurations that also include non-ring-protocol-compatible devices are disclosed. One such method, which can be performed by a network node that supports a ring protocol, involves generating a ring protocol packet and sending that ring protocol packet to a neighboring node. The ring protocol packet includes information, and the presence of this information within the packet causes a network device that receives the ring protocol packet to drop the ring protocol packet unless the network device supports a ring protocol. The information can include a reserved address (e.g., in the destination address field of the packet) as well as a ring protocol identifier.
摘要:
Various systems and methods for integrating ring-protocol-compatible devices into network configurations that also include non-ring-protocol-compatible devices are disclosed. One such method, which can be performed by a network node that supports a ring protocol, involves generating a ring protocol packet and sending that ring protocol packet to a neighboring node. The ring protocol packet includes information, and the presence of this information within the packet causes a network device that receives the ring protocol packet to drop the ring protocol packet unless the network device supports a ring protocol. The information can include a reserved address (e.g., in the destination address field of the packet) as well as a ring protocol identifier.
摘要:
Various systems and methods for integrating ring-protocol-compatible devices into network configurations that also include non-ring-protocol-compatible devices are disclosed. One such method, which can be performed by a network node that supports a ring protocol, involves generating a ring protocol packet and sending that ring protocol packet to a neighboring node. The ring protocol packet includes information, and the presence of this information within the packet causes a network device that receives the ring protocol packet to drop the ring protocol packet unless the network device supports a ring protocol. The information can include a reserved address (e.g., in the destination address field of the packet) as well as a ring protocol identifier.
摘要:
Various systems and methods for integrating ring-protocol-compatible devices into network configurations that also include non-ring-protocol-compatible devices are disclosed. One such method, which can be performed by a network node that supports a ring protocol, involves generating a ring protocol packet and sending that ring protocol packet to a neighboring node. The ring protocol packet includes information, and the presence of this information within the packet causes a network device that receives the ring protocol packet to drop the ring protocol packet unless the network device supports a ring protocol. The information can include a reserved address (e.g., in the destination address field of the packet) as well as a ring protocol identifier.
摘要:
Various systems and methods for implementing virtual ports within ring networks are disclosed. For example, one method involves allocating a logical port that corresponds to a first port and a second port and instantiating a spanning tree protocol instance. The first port and the second port are both assigned to a first ring network. The spanning tree protocol instance selectively blocks the logical port; however, the spanning tree protocol instance is unable to block the first port independently of blocking the second port. Events (e.g., link failures and recoveries) that occur within the ring network are communicated to spanning tree by transitioning the state of the logical port in response to receiving a ring protocol control packet. The spanning tree protocol instance initiates a bridge protocol data unit (BPDU) exchange from the logical port in response to a transition in the state of the logical port.
摘要:
Various systems and methods for implementing virtual ports within ring networks are disclosed. For example, one method involves allocating a logical port that corresponds to a first port and a second port and instantiating a spanning tree protocol instance. The first port and the second port are both assigned to a first ring network. The spanning tree protocol instance selectively blocks the logical port; however, the spanning tree protocol instance is unable to block the first port independently of blocking the second port. Events (e.g., link failures and recoveries) that occur within the ring network are communicated to spanning tree by transitioning the state of the logical port in response to receiving a ring protocol control packet. The spanning tree protocol instance initiates a bridge protocol data unit (BPDU) exchange from the logical port in response to a transition in the state of the logical port.
摘要:
Various systems and methods for implementing virtual ports within ring networks are disclosed. For example, one method involves allocating a logical port that corresponds to a first port and a second port and instantiating a spanning tree protocol instance. The first port and the second port are both assigned to a first ring network. The spanning tree protocol instance selectively blocks the logical port; however, the spanning tree protocol instance is unable to block the first port independently of blocking the second port. Events (e.g., link failures and recoveries) that occur within the ring network are communicated to spanning tree by transitioning the state of the logical port in response to receiving a ring protocol control packet. The spanning tree protocol instance initiates a bridge protocol data unit (BPDU) exchange from the logical port in response to a transition in the state of the logical port.
摘要:
Embodiments of an N-Port ID virtualization (NPIV) proxy module, NPIV proxy switching system, and methods are generally described herein. Other embodiments may be described and claimed. In some embodiments, login requests are distributed over a plurality of available N-ports to allow servers to be functionally coupled to F-ports of a plurality of fiber-channel (FC) switches. Fiber-channel identifiers (FCIDs) are assigned to the servers in response to the logon requests to provide single end-host operations for each of the servers.
摘要:
Various systems and methods are disclosed for providing support for responding to location protocol queries within a network node. One such method involves associating a location with a network identity by associating a network port with a network identity and also associating the network port with the location. The association between the network port and the network identity is created in response to a network identity, which can include an IP address, being assigned to a device coupled to the network port by an identity protocol such as DHCP. The packet is sent in response to detecting a request for the device's location. The method can be performed by various devices, including a first hop node coupled to the device, a location server, and an identity server.