摘要:
A user of a virtual object or computer model uses a haptic interface device in the real world to manipulate a virtual tool in a virtual environment to interact and modify the virtual object. The user uses the virtual tool in a sculpting mode to modify the shape of the virtual object by adding, removing, or modifying the material of the object. The user feels an interaction force from the virtual tool as it interacts with and modifies the virtual object. The designer can set geometric constraints, such as a constraint point, constraint line, or constraint surface, to limit or guide the movement of the virtual tool.
摘要:
A user of a virtual object or computer model uses a haptic interface device in the real world to manipulate a virtual tool in a virtual environment to interact and modify the virtual object. The user uses the virtual tool in a sculpting mode to modify the shape of the virtual object by adding, removing, or modifying the material of the object. The user feels an interaction force from the virtual tool as it interacts with and modifies the virtual object. The designer can set geometric constraints, such as a constraint point, constraint line, or constraint surface, to limit or guide the movement of the virtual tool.
摘要:
A user of a virtual object or computer model uses a haptic interface device in the real world to manipulate a virtual tool in a virtual environment to interact and modify the virtual object. The user uses the virtual tool in a sculpting mode to modify the shape of the virtual object by adding, removing, or modifying the material of the object. The user feels an interaction force from the virtual tool as it interacts with and modifies the virtual object. The designer can set geometric constraints, such as a constraint point, constraint line, or constraint surface, to limit or guide the movement of the virtual tool.
摘要:
A user of a virtual object or computer model uses a haptic interface device in the real world to manipulate a virtual tool in a virtual environment to interact and modify the virtual object. The user uses the virtual tool in a sculpting mode to modify the shape of the virtual object by adding, removing, or modifying the material of the object. The user feels an interaction force from the virtual tool as it interacts with and modifies the virtual object. The designer can set geometric constraints, such as a constraint point, constraint line, or constraint surface, to limit or guide the movement of the virtual tool.
摘要:
A user of a virtual object or computer model uses a haptic interface device in the real world to manipulate a virtual tool in a virtual environment to interact and modify the virtual object. The user uses the virtual tool in a sculpting mode to modify the shape of the virtual object by adding, removing, or modifying the material of the object. The user feels an interaction force from the virtual tool as it interacts with and modifies the virtual object. The designer can set geometric constraints, such as a constraint point, constraint line, or constraint surface, to limit or guide the movement of the virtual tool.
摘要:
A user of a modeling application modifies an initial virtual object using a sketch drawn on one or more construction planes. Typically, construction planes are connected by an axis that intersects the virtual object. The user can draw a sketch on each construction plane, and the modeling application interpolates a shape along the axis between the sketches to determine what material in the virtual object is to be removed from it. In this manner, material may be removed to create a recess or hole in the virtual object or otherwise to slice away material from the object. A user can use two or more axes and construction planes to produce complex shapes from the initial virtual object. A user can also select a portion of a virtual object and mirror the selected portion. Modifications that the user makes in the selected portion are made correspondingly in the mirrored portion.
摘要:
A user of a modeling application modifies an initial virtual object using a sketch drawn on one or more construction planes. Typically, construction planes are connected by an axis that intersects the virtual object. The user can draw a sketch on each construction plane, and the modeling application interpolates a shape along the axis between the sketches to determine what material in the virtual object is to be removed from it. In this manner, material may be removed to create a recess or hole in the virtual object or otherwise to slice away material from the object. A user can use two or more axes and construction planes to produce complex shapes from the initial virtual object. A user can also select a portion of a virtual object and mirror the selected portion. Modifications that the user makes in the selected portion are made correspondingly in the mirrored portion.
摘要:
A user of a modeling application modifies an initial virtual object using a sketch drawn on one or more construction planes. Typically, construction planes are connected by an axis that intersects the virtual object. The user can draw a sketch on each construction plane, and the modeling application interpolates a shape along the axis between the sketches to determine what material in the virtual object is to be removed from it. In this manner, material may be removed to create a recess or hole in the virtual object or otherwise to slice away material from the object. A user can use two or more axes and construction planes to produce complex shapes from the initial virtual object. A user can also select a portion of a virtual object and mirror the selected portion. Modifications that the user makes in the selected portion are made correspondingly in the mirrored portion.
摘要:
A user of a modeling application uses a haptic interface device in the real world to manipulate a virtual tool in a virtual environment to interact with a virtual object. The user can use the tool to evaluate the shape of the virtual object and navigate its virtual surface, based on an interactive force feedback approach. When the user attempts to penetrate the virtual object with the virtual tool, a modeling application limits the movement of the virtual tool depending on the geometry of the surface, the position of the virtual tool, and a haptic interface location in the virtual environment, which represents the physical location of the haptic interface device in the real world. The user can evaluate different geometries of the virtual surface, including an edge geometry, such as occurs when the virtual tool is touching or moving along an edge of the virtual object.