摘要:
An electro-optical device for processing an optical signal, comprises an electrode that is arranged and designed so that the optical signal at least partially intrudes the electrode when the optical signal is processed in the electro-optical device. An insulator is arranged adjacent to the electrode so that one face of the electrode contacts the insulator. A gate is arranged so that a voltage is applicable between the electrode and the gate such that a charge layer is induced on the face of the electrode that is contacting the insulator.
摘要:
An optical arrangement includes a plurality of planar substrates with at least one planar integrated optical waveguide on each planar substrate. At least one optical waveguide structure has at least one end connected via an optical connecting structure to one of the planar integrated optical waveguides. The optical waveguide structure is positioned at least partly outside the integration plane for the planar integrated optical waveguide and a refractive index contrast between a core region and a cladding region of the optical waveguide structure is at least 0.01.
摘要:
In an integrated optical circuit, light from a light source is polarized and coupled to a first and second strip waveguide. A waveguide coupling element couples the two optical signals from the two strip waveguides to different polarization modes of an optical fiber line. The optical fiber line is connected to a measuring head, which reflects the optical signal and in which a phase difference between the two optical partial signals is modulated in a magnetic field. In the waveguide coupling element, the reflected signal is split into two optical partial signals having the same polarization and the phase difference between the two partial signals is determined. A phase modulator device provides for closed-loop operation. Compared to fiber-optical concepts, the number of splices is reduced.
摘要:
An optical arrangement includes a plurality of planar substrates with at least one planar integrated optical waveguide on each planar substrate. At least one optical waveguide structure has at least one end connected via an optical connecting structure to one of the planar integrated optical waveguides. The optical waveguide structure is positioned at least partly outside the integration plane for the planar integrated optical waveguide and a refractive index contrast between a core region and a cladding region of the optical waveguide structure is at least 0.01.
摘要:
A method for making optical connections with optical waveguides includes mounting the optical waveguides or a device comprising the optical waveguides, on a component carrier. A partial region of the optical waveguides is embedded in a volume of resist material. Positions of the optical waveguides to be connected are detected with reference to a coordinate system using a measuring system. Favorable, three-dimensional geometries are determined for optical waveguide structures for connecting the optical waveguides to each other at predetermined connecting locations and the optical waveguide structure geometries are converted to a machine-readable dataset. The optical waveguide geometries in the volume of the resist material are three-dimensionally structured using a direct-writing lithography device operating on the basis of the machine-readable dataset. The structured resist material is treated using physical or chemical methods to form at least one optical waveguide structure having ends connected to predetermined connecting locations of the optical waveguides.
摘要:
A method for making optical connections with optical waveguides includes mounting the optical waveguides or a device comprising the optical waveguides, on a component carrier. A partial region of the optical waveguides is embedded in a volume of resist material. Positions of the optical waveguides to be connected are detected with reference to a coordinate system using a measuring system. Favorable, three-dimensional geometries are determined for optical waveguide structures for connecting the optical waveguides to each other at predetermined connecting locations and the optical waveguide structure geometries are converted to a machine-readable dataset. The optical waveguide geometries in the volume of the resist material are three-dimensionally structured using a direct-writing lithography device operating on the basis of the machine-readable dataset. The structured resist material is treated using physical or chemical methods to form at least one optical waveguide structure having ends connected to predetermined connecting locations of the optical waveguides.
摘要:
An optical detector for detecting an optical signal beam (OSB) modulated in a way that it includes an in-phase and/or a quadrature component, includes: a polarisation beam splitter arranged to split the OSB into two polarised OSBs; a non-polarisation beam splitter arranged to further split each of the two polarised OSBs into two split polarised OSBs; at least one birefringent element providing a phase shift, the birefringent element being arranged in a path of at least one polarised OSB and/or in a path of at least one split polarised OSB so that an in-phase and quadrature phase offset between two split polarised OSBs originating from the same polarised OSB is formed in output signal beams; and at least two detection means arranged to receive at least one output signal beam that includes a in-phase and/or quadrature component of the OSB.
摘要:
An optical detector for detecting an optical signal beam (OSB) modulated in a way that it includes an in-phase and/or a quadrature component, includes: a polarization beam splitter arranged to split the OSB into two polarized OSBs; a non-polarization beam splitter arranged to further split each of the two polarized OSBs into two split polarized OSBs; at least one birefringent element providing a phase shift, the birefringent element being arranged in a path of at least one polarized OSB and/or in a path of at least one split polarized OSB so that an in-phase and quadrature phase offset between two split polarized OSBs originating from the same polarized OSB is formed in output signal beams; and at least two detection means arranged to receive at least one output signal beam that includes a in-phase and/or quadrature component of the OSB.
摘要:
A high-index contrast waveguide component is presented, which is based on the fast changing of the transmission properties of an optical waveguide by applying electric voltages, or by embossing electric currents. The waveguide consists of a high-refractive waveguide core surrounded by a low-refractive surrounding material, which at least area by area has electro-optical properties. By applying a voltage to completely or partially optically transparent electrodes, an electric field is generated having a strong overlap with the optical mode, being in interaction with it, and therefore changing the transmission properties of the waveguide. The transparent electrodes or supply line areas are laminar, connected at low resistance with conductor paths of high conductivity by means of structures continually repeated along the propagation direction. Thus, it is possible for example to very fast load the capacity being effective between the electrodes, and to thus achieve a high electric band width. In certain embodiments, the waveguide core itself consists of one or more electrically conductive stripes being used as electrodes at the same time. These embodiments make especially small switching voltages possible.For example, the presented component makes fast electro-optical modulators with small switching voltages possible, which modulators may be integrated together with electronic components on a common semiconductor substrate (e.g. silicon).
摘要:
A high-index contrast waveguide component is presented, which is based on the fast changing of the transmission properties of an optical waveguide by applying electric voltages, or by embossing electric currents. The waveguide consists of a high-refractive waveguide core surrounded by a low-refractive surrounding material, which at least area by area has electro-optical properties. By applying a voltage to completely or partially optically transparent electrodes, an electric field is generated having a strong overlap with the optical mode, being in interaction with it, and therefore changing the transmission properties of the waveguide. The transparent electrodes or supply line areas are laminar, connected at low resistance with conductor paths of high conductivity by means of structures continually repeated along the propagation direction. Thus, it is possible for example to very fast load the capacity being effective between the electrodes, and to thus achieve a high electric band width. In certain embodiments, the waveguide core itself consists of one or more electrically conductive stripes being used as electrodes at the same time. These embodiments make especially small switching voltages possible.For example, the presented component makes fast electro-optical modulators with small switching voltages possible, which modulators may be integrated together with electronic components on a common semiconductor substrate (e.g. silicon).