COPPER-BERYLLIUM ALLOY WITH HIGH STRENGTH

    公开(公告)号:US20250059636A1

    公开(公告)日:2025-02-20

    申请号:US18939813

    申请日:2024-11-07

    Abstract: A process for producing a copper-beryllium alloy product. The process comprises preparing a base alloy having 0.15 wt %-4.0 wt % beryllium and having grains and an initial cross section area. The process further comprises cold working the base alloy to a percentage of cold reduction of area (CRA) greater than 40%, based on the initial cross section area, and heat treating the cold worked alloy to produce the copper-beryllium alloy product. The grain structure of the copper-beryllium alloy product has an orientation angle of less than 45° when viewed along the direction of the cold working. The copper-beryllium alloy product demonstrates a fatigue strength of at least 385 MPa after 106 cycles of testing.

    YTTRIUM ALUMINUM GARNET POWDER AND PROCESSES FOR SYNTHESIZING SAME

    公开(公告)号:US20220242793A1

    公开(公告)日:2022-08-04

    申请号:US17587800

    申请日:2022-01-28

    Abstract: A process of synthesizing a yttrium aluminum garnet (YAG) powder. The process comprises introducing powders of yttria and silica to form a powder mixture, wherein alumina is not added to the powder mixture. Milling the powder mixture in the presence of an alumina grinding media and a solvent forms a powder slurry. Processing the powder slurry forms a green compact. Calcining the green compact at a temperature of from 1100° C. to 1650° C. for greater than 8 hours in air to 50% or less theoretical density forms a YAG compact of at least 92 wt % Y3Al5O12. Milling the YAG compact, without a grinding media, and drying produces the YAG powder. Processes further include introducing a dopant to the powder mixture to produce doped YAG powder.

    COPPER-BERYLLIUM ALLOY WITH HIGH STRENGTH

    公开(公告)号:US20220220597A1

    公开(公告)日:2022-07-14

    申请号:US17609088

    申请日:2020-05-05

    Abstract: A process for producing a copper-beryllium alloy product. The process comprises preparing a base alloy having 0.15 wt %-4.0 wt % beryllium and having grains and an initial cross section area. The process further comprises cold working the base alloy to a percentage of cold reduction of area (CRA) greater than 40%, based on the initial cross section area, and heat treating the cold worked alloy to produce the copper-beryllium alloy product. The grain structure of the copper-beryllium alloy product has an orientation angle of less than 45° when viewed along the direction of the cold working. The copper-beryllium alloy product demonstrates a fatigue strength of at least 385 MPa after 106 cycles of testing.

Patent Agency Ranking