Copper-beryllium alloy with high strength

    公开(公告)号:US12139783B2

    公开(公告)日:2024-11-12

    申请号:US17609088

    申请日:2020-05-05

    Abstract: A process for producing a copper-beryllium alloy product. The process comprises preparing a base alloy having 0.15 wt %-4.0 wt % beryllium and having grains and an initial cross section area. The process further comprises cold working the base alloy to a percentage of cold reduction of area (CRA) greater than 40%, based on the initial cross section area, and heat treating the cold worked alloy to produce the copper-beryllium alloy product. The grain structure of the copper-beryllium alloy product has an orientation angle of less than 45° when viewed along the direction of the cold working. The copper-beryllium alloy product demonstrates a fatigue strength of at least 385 MPa after 106 cycles of testing.

    GRAPHENE/COPPER COMPOSITE DEFORMED COPPER-CHROMIUM-ZIRCONIUM ALLOY LAYERED STRIP AND PREPARATION METHOD THEREOF

    公开(公告)号:US20240254593A1

    公开(公告)日:2024-08-01

    申请号:US18628786

    申请日:2024-04-07

    CPC classification number: C22C9/00 C22F1/08 C25D3/38 C25D5/34 C25D5/50 C25D7/0614

    Abstract: A method for preparing a graphene/copper composite deformed copper-chromium-zirconium alloy layered strip is provided. The method includes: obtaining a deformed copper-chromium-zirconium alloy strip by performing a solid solution treatment on a bulk copper-chromium-zirconium alloy, and performing a room temperature equal channel extrusion and a low temperature rolling on the bulk copper-chromium-zirconium alloy after the solid solution; obtaining a graphene/copper composite deformed copper-chromium-zirconium alloy strip by preparing a graphene/copper composite deposition liquid and performing a surface electrodeposition treatment on the deformed copper-chromium-zirconium alloy strip; obtaining the graphene/copper composite deformed copper-chromium-zirconium alloy layered strip with a rolling deformation of 65%-95% by stacking the graphene/copper composite deformed copper-chromium-zirconium alloy strips for 3-7 layers, and then performing a cold rolling, a single rolling deformation being 5%-10%; and performing a vacuum aging on the graphene/copper composite deformed copper-chromium-zirconium alloy layered strip.

    Cu-based alloy powder
    7.
    发明授权

    公开(公告)号:US11987870B2

    公开(公告)日:2024-05-21

    申请号:US17621530

    申请日:2020-07-17

    Abstract: Provided is a Cu-based alloy powder that is suitable for a process involving rapid melting and rapid solidification and that can provide a shaped object superior in characteristics. The powder is composed of a Cu-based alloy, which contains an element M being one or more elements selected from Cr, Fe, Ni, Zr, and Nb: 0.1% by mass or more and 10.0% by mass or less, Si: more than 0% by mass and 0.20% by mass or less, P: more than 0% by mass and 0.10% by mass or less, and S: more than 0% by mass and 0.10% by mass or less, the balance being Cu and inevitable impurities. This powder has a ratio (D50/TD) of the average particle diameter D50 (μm) thereof to the tap density TD (Mg/m3) is 0.2×10−5·m4/Mg or more and 20×10−5·m4/Mg or less, and has a sphericity of 0.80 or more and 0.95 or less.

Patent Agency Ranking