摘要:
A method for calibrating a transmitter-to-receiver (T2R) relative phase in millimeter wave (mmWave) beamforming system includes: transmitting a first calibrated signal to a second antenna of the mmWave beamforming system through a first antenna of the mmWave beamforming system according to a first transmitter (TX) input signal; receiving the first calibrated signal through the second antenna, and obtaining a first loopback receiver (RX) signal according to the first calibrated signal received by the second antenna; transmitting a second calibrated signal to the first antenna through the second antenna according to a second TX input signal; receiving the second calibrated signal through the first antenna, and obtaining a second loopback RX signal according to the second calibrated signal received by the first antenna; and calibrating the T2R relative phase according to a phase difference between the first and second loopback RX signals.
摘要:
A method for compensating the frequency dependent phase imbalance in a receiver is provided. The receiver downconverts an input signal to generate the signal r(t). The signal r(t) has an in-phase component rI(t) and a quadrature component rQ(t). A first test signal with a first carrier frequency is applied as the input signal of the receiver to obtain a first phase imbalance I. A second test signal with a second carrier frequency is applying as the input signal of the receiver to obtain a second phase imbalance. An IQ delay mismatch Δt of the receiver according to the difference of the second and the first phase imbalances and the difference of the second and the first carrier frequencies is obtained. The in-phase component rI(t) and the quadrature component rQ(t) of the signal r(t) corresponding to other input signal is compensated according to the obtained IQ delay mismatch Δt.
摘要:
A method for calibrating a transmitter-to-receiver (T2R) relative phase in millimeter wave (mmWave) beamforming system includes: transmitting a first calibrated signal to a second antenna of the mmWave beamforming system through a first antenna of the mmWave beamforming system according to a first transmitter (TX) input signal; receiving the first calibrated signal through the second antenna, and obtaining a first loopback receiver (RX) signal according to the first calibrated signal received by the second antenna; transmitting a second calibrated signal to the first antenna through the second antenna according to a second TX input signal; receiving the second calibrated signal through the first antenna, and obtaining a second loopback RX signal according to the second calibrated signal received by the first antenna; and calibrating the T2R relative phase according to a phase difference between the first and second loopback RX signals.
摘要:
A communication unit includes: a quadrature transmitter having analog transmit filter(s) for filtering a first quadrature test signal. An analog feedback loopback path selectively first routes the filtered quadrature first test signal to a quadrature receiver. The quadrature receiver has: at least one analog receive filter for further filtering the filtered quadrature first test signal; and a quadrature receive baseband circuit arranged to receive and decode the further filtered quadrature first test signal. The quadrature transmitter is arranged to receive a second quadrature test signal and the analog feedback loopback path selectively routes a filtered quadrature second test signal to the quadrature receiver via a second route such that the quadrature receive baseband circuit is arranged to determine a frequency-dependent quadrature imbalance of at least one component in the transmitter/receiver based on the decoded further filtered first quadrature test signal and the decoded further filtered second quadrature test signal.
摘要:
A method for performing antenna tuning control of a wireless transceiver device in a wireless communications system and associated apparatus are provided. The method may include: during a tuning stage among multiple stages, utilizing a communications control circuit within the wireless transceiver device to obtain predetermined characterization data of at least one impedance-related tuning component regarding antenna tuning of at least one antenna from a storage device within the wireless transceiver device, where the at least one impedance-related tuning component includes at least one aperture tuner (APT); during the tuning stage, utilizing the communications control circuit to measure voltage standing wave ratio(s) (VSWR(s)) of any antenna among the at least one antenna; and during the tuning stage, utilizing the communications control circuit to determine at least one setting of the at least one impedance-related tuning component according to the predetermined characterization data and the measured VSWR(s), for antenna performance optimization.
摘要:
A method for compensating the frequency dependent phase imbalance in a receiver is provided. The receiver downconverts an input signal to generate the signal r(t). The signal r(t) has an in-phase component rI(t) and a quadrature component rQ(t). A first test signal with a first carrier frequency is applied as the input signal of the receiver to obtain a first phase imbalance I. A second test signal with a second carrier frequency is applying as the input signal of the receiver to obtain a second phase imbalance. An IQ delay mismatch Δt of the receiver according to the difference of the second and the first phase imbalances and the difference of the second and the first carrier frequencies is obtained. The in-phase component rI(t) and the quadrature component rQ(t) of the signal r(t) corresponding to other input signal is compensated according to the obtained IQ delay mismatch Δt.
摘要:
A communication unit includes: a quadrature transmitter having analog transmit filter(s) for filtering a first quadrature test signal. An analog feedback loopback path selectively first routes the filtered quadrature first test signal to a quadrature receiver. The quadrature receiver has: at least one analog receive filter for further filtering the filtered quadrature first test signal; and a quadrature receive baseband circuit arranged to receive and decode the further filtered quadrature first test signal. The quadrature transmitter is arranged to receive a second quadrature test signal and the analog feedback loopback path selectively routes a filtered quadrature second test signal to the quadrature receiver via a second route such that the quadrature receive baseband circuit is arranged to determine a frequency-dependent quadrature imbalance of at least one component in the transmitter/receiver based on the decoded further filtered first quadrature test signal and the decoded further filtered second quadrature test signal.
摘要:
A method for compensating the frequency dependent phase imbalance in a transmitter is provided. The transmitter processes a baseband signal. The method includes the following steps: (a) compensating the baseband signal with a predetermined delay amounts; (b) inputting the compensated baseband signal to an upconversion circuit to generate a radio frequency (RF) signal; (c) inputting the RF signal to a delay information extractor to obtain a correlation value related to the information of the predetermined delay amount; (d) changing the predetermined delay amount and compensating the baseband signal again with the changed predetermined delay amount, and performing steps (b) and (c) again to update the correlation value; and (e) selecting a candidate delay amount from the predetermined delay amount according to the correlation value, and compensating the transmitter by using the candidate delay amount.
摘要:
A method for compensating the frequency dependent phase imbalance in a transmitter is provided. The transmitter processes a baseband signal. The method includes the following steps: (a) compensating the baseband signal with a predetermined delay amounts; (b) inputting the compensated baseband signal to an upconversion circuit to generate a radio frequency (RF) signal; (c) inputting the RF signal to a delay information extractor to obtain a correlation value related to the information of the predetermined delay amount; (d) changing the predetermined delay amount and compensating the baseband signal again with the changed predetermined delay amount, and performing steps (b) and (c) again to update the correlation value; and (e) selecting a candidate delay amount from the predetermined delay amount according to the correlation value, and compensating the transmitter by using the candidate delay amount.