Abstract:
An image processing method performed by an image processor includes: receiving an image, wherein the image comprises a plurality of pixels having different strengths of at least one color; unevenly adjusting the strengths of the at least one color of specific pixels to generate a processed image.
Abstract:
Various schemes pertaining to generating a full-frame color image using a hybrid sensor are described. An apparatus receives sensor data from the hybrid sensor, wherein the sensor data includes partial-frame chromatic data of a plurality of chromatic channels and partial-frame color-insensitive data. The apparatus subsequently generates full-frame color-insensitive data based on the partial-frame color-insensitive data. The apparatus subsequently generates the full-frame color image based on the full-frame color-insensitive data and the partial-frame chromatic data. The apparatus provides benefits of enhancing image quality of the full-frame color image especially under low light conditions.
Abstract:
Various schemes pertaining to generating a full-frame color image using a hybrid sensor are described. An apparatus receives sensor data from the hybrid sensor, wherein the sensor data includes partial-frame chromatic data of a plurality of chromatic channels and partial-frame color-insensitive data. The apparatus subsequently generates full-frame color-insensitive data based on the partial-frame color-insensitive data. The apparatus subsequently generates the full-frame color image based on the full-frame color-insensitive data and the partial-frame chromatic data. The apparatus provides benefits of enhancing image quality of the full-frame color image especially under low light conditions.
Abstract:
An image enhancement method applied to an image enhancement apparatus and includes acquiring a first edge feature from a first spectral image and a second edge feature from a second spectral image, analyzing similarity between the first edge feature and the second edge feature to align the first spectral image with the second spectral image, acquiring at least one first detail feature from the first spectral image and at least one second detail feature from the second spectral image, comparing the first edge feature and the second edge feature to generate a first weight and a second weight, and fusing the first detail feature weighted by the first weight with the second detail feature weighted by the second weight to generate a fused image. The first spectral image and the second spectral image are captured at the same point of time.