摘要:
An optical signal module including a driver and an optical signal module. The driver includes a differential pair configured to receive and process an input signal to create a drive signal. A modulation current source provides a modulation current to the differential pair. One or more termination resistors connected to the differential pair for impedance matching. A first switch, responsive to a first control signal, maintains charge on a charge storage device. The optical signal module includes an optical signal generator arranged between a supply voltage node and a bias current node. The optical signal generator receives the drive signal and generates an optical signal representing the input signal. A second switch is between a supply voltage node the bias current node. The second switch, responsive to second control signal, selectively establishes a short between the supply voltage node the bias current node.
摘要:
A system is disclosed to automatically establish proper biasing for light sources in a color mixed projection system having multiple light sources which are active at the same time. Responsive to a feedback signal, a single DC-DC converter generates the bias voltage for the light sources. Comparators compare a headroom signal for each light source to a reference value to generate comparator output signals. The comparator output signals are processed by a channel selector and a digital filter/DAC module. The channel selector controls a switch to selectively provide and combine a headroom signal with an output of the digital filter/DAC module to create the feedback signal. By monitoring each headroom value, the bias voltage is adjusted, based on the feedback signal, until every headroom signal reaches the reference value thereby achieving sufficient biasing for every active light source in the color mixed projection system.
摘要:
A reconfigurable DC-DC converter including a controller is disclosed which automatically adjusts the mode of operation (buck mode or boost mode) depending on the system requirements and is able to achieve the maximum efficiency and the lowest inductance current. The method of switching between buck and boost mode allows the converter to operate to 100% duty cycle for buck mode and 0% duty cycle for boost mode. This maximizes efficiency since the buck-boost mode of operation is eliminated and improves the stability and reliability of the system. A converter output voltage is processed and compared to a control voltage to generate buck and boost comparator output signals. The buck and boost comparator output signals are provided to control logic, which generates switch control signals, which are provided to the DC-DC converter to establish buck mode, boost mode, or pass-through mode.
摘要:
A system is disclosed to automatically establish proper biasing for light sources in a color mixed projection system having multiple light sources which are active at the same time. Responsive to a feedback signal, a single DC-DC converter generates the bias voltage for the light sources. Comparators compare a headroom signal for each light source to a reference value to generate comparator output signals. The comparator output signals are processed by a channel selector and a digital filter/DAC module. The channel selector controls a switch to selectively provide and combine a headroom signal with an output of the digital filter/DAC module to create the feedback signal. By monitoring each headroom value, the bias voltage is adjusted, based on the feedback signal, until every headroom signal reaches the reference value thereby achieving sufficient biasing for every active light source in the color mixed projection system.
摘要:
A reconfigurable DC-DC converter including a controller is disclosed which automatically adjusts the mode of operation (buck mode or boost mode) depending on the system requirements and is able to achieve the maximum efficiency and the lowest inductance current. The method of switching between buck and boost mode allows the converter to operate to 100% duty cycle for buck mode and 0% duty cycle for boost mode. This maximizes efficiency since the buck-boost mode of operation is eliminated and improves the stability and reliability of the system. A converter output voltage is processed and compared to a control voltage to generate buck and boost comparator output signals. The buck and boost comparator output signals are provided to control logic, which generates switch control signals, which are provided to the DC-DC converter to establish buck mode, boost mode, or pass-through mode.