摘要:
The gas turbine stationary blade comprises a stationary blade section provided therein with a passage for cooling air, an inner shroud for supporting the stationary blade section on the side of a discharge port of the cooling air, and a plurality of segments each of which includes at least one stationary blade section and at least one inner shroud. A flow passage is pulled out from the discharge port of the cooling air, and the flow passage is introduced to a front edge corner section of the inner shroud and is extended rearward along a side edge of the inner shroud.
摘要:
In order to provide a turbine blade fatigue life evaluating method for quantitively evaluating the fatigue life of a turbine blade, the turbine blade is determined to be within its fatigue life if the creep elongation strain in the longitudinal direction of the turbine blade is less than 0.5% of an initial length, and is determined to exceed its fatigue life if the creep elongation strain is 0.5% or more than the initial length. A turbine blade creep elongation strain measuring apparatus 20 comprises a first fixed end 21, a second fixed end 22, and a dial gauge 24. A dimension in the longitudinal direction is stamped on the surface of a turbine blade.
摘要:
In the gas turbine split ring, on an outer peripheral surface 1b between two cabin attachment flanges, a circumferential rib which extends in the circumferential direction and an axial rib which extends in the axial direction and has a height taller than that of the circumferential rib are, respectively, formed in plural lines, so that it is possible to suppress heat deformation in the axial direction which largely contributes to reduction of the tip clearance compared to head deformation in the circumferential direction more efficiently.
摘要:
Holes 38 and 39 have upstream opening portions 38b and 39b and downstream opening portions 38a and 39a which have a larger cross-sectional area than upstream opening portions 38b and 39b, and are formed at top portion TP of each moving blade. Holes 38 and 39 have tapered shapes T1 and T2 or step portions, and preferably, downstream opening portions 38a and 39a are eccentrically formed toward the moving direction. When tip squealer 37 is formed, hole 38 is formed so that its opening portion is provided at the side surface of tip squealer 37. Without covering the holes for cooling which are formed at the top portion of the turbine blade due to rubbing or the like, the turbine blade is accurately cooled and stably driven.
摘要:
An object of the present invention is to provide a ring segment of a gas turbine in which the temperature is maintained low, damage due to high temperature oxidization is prevented, and high temperature deformation is prevented. In order to achieve the object, the present invention provides a ring segment of a gas turbine which comprises a blade ring, a main shaft and moving blades comprising a plurality of individual units which define an annular form by being arranged around the peripheral direction of the main shaft, and disposed so that its inner peripheral surface is maintained at a constant distance from the tips of the moving blades, wherein grooves which extends along the axial direction of the main shaft of the turbine are formed upon of the individual units so as mutually to confront one another; a seal plate which is inserted into each mutually confronting pair of the grooves so as to connect together the adjacent pair of individual units; and contact surfaces which are formed at positions more radially inward than the seal plates, which extend in the axial direction and the peripheral direction and which mutually contact one another.
摘要:
A stationary blade of a gas turbine, which can reduce thermal stress produced at a portion in the vicinity of a rear edge of an inner shroud of the stationary blade. The stationary blade is positioned adjacent to at least one of moving-blade disks in an axial direction of the gas turbine. A concave portion is provided in the inner shroud in a manner such that the concave portion is formed in the vicinity of a rear edge of the inner shroud and on an inner-peripheral face of the inner shroud, where cooling air passes along the inner-peripheral face which faces a rotation shaft of the moving-blade disks; and a protruding portion which protrudes towards the rotation shaft is formed at the rear edge of the inner shroud.
摘要:
The division wall is made up of a plurality of division wall sections forming a passage wall of high temperature gas which are connected in the direction of arrangement of blades to form a wall surface having a roughly circular cross section as a whole, a gas flow restricting structure for preventing high temperature gas from passing through a gap formed at a connecting portion between the division wall sections in the flow direction of the high temperature gas from the opening on the upstream side of the high temperature gas in the gap, or a gas flow restricting structure for preventing the high temperature gas from being embraced in the gap, for example, a sealing member formed into a prism having a T-shape cross section as a whole composed of a plane portion as a sealing portion and a projected portion for filling the gap is provided.
摘要:
The object of the present invention is to provide a turbine moving blade that has high heat resistance and can be used for a long period of time by improving the cooling efficiency of the turbine moving blade, and to improve both the thermal efficiency and operating efficiency of a gas turbine through the use of this turbine moving blade. In order to achieve the object, the present invention provide a turbine moving blade arranged in a combustion gas flow path in which a plurality of blow-out openings for blowing out a cooling medium are formed in its outer surface, wherein among a plurality of cooling medium trailing edge blow-out openings arranged from the vicinity of a blade base to the vicinity of a blade tip along a blade trailing edge of turbine moving blade, the opening area of a blade tip trailing edge blow-out opening located in the vicinity of blade tip is set to be larger than the opening area of the other trailing edge blow-out openings.
摘要:
One object of the present invention is to provide a gas turbine where cooling failure attributable to the occurrence of a horseshoe vortex produced in the vicinity of the stationary blades of the turbine, can be prevented. In order to achieve the object, the present invention provides a gas turbine comprising moving blades provided on a rotor side which rotate together with the rotor, and stationary blades provided on a stationary side which cover the periphery of the moving blades and form a combustion gas flow path in the interior, and which are arranged alternately with the moving blades in the rotation axis direction of the rotor, and where the stationary blades have a blade portion arranged inside the combustion gas flow path, an outside shroud provided on an outer peripheral end side of the blade portion, and an inside shroud provided on an inner peripheral end side of the blade portion, in one or both of the outside shroud and the inside shroud, corresponding to a leading edge of the blade portion, there is provided a first cooling air flow path which blows out cooling air into the combustion gas flow path, from downstream to upstream in the flow direction of the combustion gas.
摘要:
A split ring is disposed on an inner wall of a gas turbine casing. The split ring is composed of a plurality of split segments that are arranged on the inner wall of the casing in circumferential direction. A predetermined clearance is formed between the inner face of a split segment and the rotor blade tips. The split segments are arranged so that a predetermined circumferential clearance is formed between the split segments in order to allow the thermal expansion of the segments. A circumferential end face located upstream side of the segments with respect to the direction of the rotor blade rotation is connected to the inner face by a transition face having a surface formed as an inclined plane. The inclined plane prevents the swirl flow caused by the rotating rotor blade from impinging the upstream end face and, thereby, suppresses a temperature rise of the split segment at the upstream end face.