EXTERNAL RESERVOIR CONFIGURATION FOR TUNABLE ACOUSTIC GRADIENT LENS

    公开(公告)号:US20190369300A1

    公开(公告)日:2019-12-05

    申请号:US16000319

    申请日:2018-06-05

    Abstract: A tunable acoustic gradient (TAG) lens is provided including a lens casing, a refractive fluid, a controllable acoustic wave generating element (e.g., a piezoelectric vibrator) and an external reservoir configuration. An operational volume of the refractive fluid is contained in a casing cavity of the lens casing. The external reservoir configuration includes a deformable external fluid reservoir that contains a reserve volume of the refractive fluid and that is connected to the casing cavity by a flow channel. The flow channel enables the refractive fluid to flow back and forth between the casing cavity and the deformable external fluid reservoir in accordance with expansion and contraction of the refractive fluid (e.g., due to changes in temperature). The lens casing, deformable external fluid reservoir and flow channel are configured as a sealed system, with no intentional gas volume included in the sealed system.

    STABILIZING OPERATION OF A HIGH SPEED VARIABLE FOCAL LENGTH TUNABLE ACOUSTIC GRADIENT LENS IN AN IMAGING SYSTEM

    公开(公告)号:US20190075234A1

    公开(公告)日:2019-03-07

    申请号:US15696680

    申请日:2017-09-06

    Abstract: A method is provided for operating an imaging system to maintain a tunable acoustic gradient (TAG) lens at a desired operating state. In a first step, the TAG lens operates using a standard imaging drive control configuration (e.g., a standard drive voltage and duration) during a plurality of imaging drive mode time periods, to achieve a standard imaging state of the TAG lens. In a second step, the TAG lens operates using a regulating adaptive drive control configuration during a plurality of regulating adaptive drive mode time periods, wherein at least one of a different respective TAG lens drive voltage and a different respective TAG lens drive duration is used for different respective regulating adaptive drive mode time periods, based on a monitoring signal that is indicative of a difference between the standard imaging state and a current operating state of the TAG lens.

    Tunable acoustic gradient lens with axial compliance portion

    公开(公告)号:US10890693B2

    公开(公告)日:2021-01-12

    申请号:US16227561

    申请日:2018-12-20

    Abstract: A tunable acoustic gradient (TAG) lens includes an acoustic wave generating element and a refractive fluid in a casing cavity surrounded by a lens casing. The lens casing includes case ends which each include a window configuration, a case end rim portion and an enhanced axial compliance portion. The window configuration includes a window and a window mounting portion having an overall window mount dimension along the axial direction. The enhanced axial compliance portion is coupled between the window mounting portion and the case end rim portion and includes a reduced thickness region characterized by a material thickness that is at most 75% of the associated window mount dimension. The axial compliance portion is configured to enhance the axial deflection of the window mounting portion compared to the case end rim portion, when a periodic drive signal is applied to the acoustic wave generating element.

    External reservoir configuration for tunable acoustic gradient lens

    公开(公告)号:US10520650B2

    公开(公告)日:2019-12-31

    申请号:US16000319

    申请日:2018-06-05

    Abstract: A tunable acoustic gradient (TAG) lens is provided including a lens casing, a refractive fluid, a controllable acoustic wave generating element (e.g., a piezoelectric vibrator) and an external reservoir configuration. An operational volume of the refractive fluid is contained in a casing cavity of the lens casing. The external reservoir configuration includes a deformable external fluid reservoir that contains a reserve volume of the refractive fluid and that is connected to the casing cavity by a flow channel. The flow channel enables the refractive fluid to flow back and forth between the casing cavity and the deformable external fluid reservoir in accordance with expansion and contraction of the refractive fluid (e.g., due to changes in temperature). The lens casing, deformable external fluid reservoir and flow channel are configured as a sealed system, with no intentional gas volume included in the sealed system.

    Configuration for coupling chromatic range sensor optical probe to coordinate measurement machine

    公开(公告)号:US11118896B2

    公开(公告)日:2021-09-14

    申请号:US16698078

    申请日:2019-11-27

    Abstract: A configuration for coupling a chromatic range sensor optical probe to a coordinate measurement machine (CMM) includes an electric auto connection and a free-space fiber optic coupling with first and second coupling elements. The first coupling element has a first fiber optic connector configured to couple to wavelength detector and light source elements of a CMM through a first optical fiber, and is configured to mount to a probe head of the CMM. The second coupling element has a second fiber optic connector configured to couple to an optical pen of a chromatic range sensor (CRS) optical probe through a second optical fiber, and is configured to mount to the CRS optical probe. One of the first or second coupling elements includes a pair of optical lenses configured to collimate light received via the first optical fiber and focus the collimated light into the second optical fiber.

    Stabilizing operation of a high speed variable focal length tunable acoustic gradient lens in an imaging system

    公开(公告)号:US10225457B1

    公开(公告)日:2019-03-05

    申请号:US15696680

    申请日:2017-09-06

    Abstract: A method is provided for operating an imaging system to maintain a tunable acoustic gradient (TAG) lens at a desired operating state. In a first step, the TAG lens operates using a standard imaging drive control configuration (e.g., a standard drive voltage and duration) during a plurality of imaging drive mode time periods, to achieve a standard imaging state of the TAG lens. In a second step, the TAG lens operates using a regulating adaptive drive control configuration during a plurality of regulating adaptive drive mode time periods, wherein at least one of a different respective TAG lens drive voltage and a different respective TAG lens drive duration is used for different respective regulating adaptive drive mode time periods, based on a monitoring signal that is indicative of a difference between the standard imaging state and a current operating state of the TAG lens.

Patent Agency Ranking