Abstract:
An improved touch-sensitive panel is provided. The improved touch-sensitive panel comprises ALD alumina coated on hard glass which allows the touch screen to operate when wet without false actuations while maintaining a hard, transparent, scratch resistant hydrophilic surface.
Abstract:
An antenna is provided with improved ruggedness and flexibility through the use of an embedded substrate with impedance matching circuitry disposed thereon, and a flexible electrical interconnect. The flexible electrical interconnect is coupled between the substrate and an antenna connector. The antenna comprises a first top flexible section having the flexible radiator element, a second stiff section comprising the impedance matching circuit for multi-band operation, and a third lower flexible section comprising the flexible electrical interconnect. Portable radio products incorporating the antenna can now provide multiband capability along with protection against drop.
Abstract:
An antenna enables compact and robust multiband operation of portable radios. According to some embodiments, the antenna includes: a first rolled conductive strip having a first section with overlap between successive turns of the first conductive strip and a second section with no overlap between successive turns of the first conductive strip, the first section having an insulating layer between the overlapping successive turns of the first conductive strip; a second rolled conductive strip; and a flexible sheet to which both the first conductive strip and the second conductive strip are bonded.
Abstract:
An antenna (100) with an embedded wideband matching substrate (102) is provided. The substrate (102) comprises impedance matching circuitry (300) providing a low frequency (LF) matching circuit (330) and a high frequency (HF) matching circuit (340) for tri-band operation. A stripline (314) having a stripline ground (324) is disposed on the substrate. The stripline (314) provides a matching element and the stripline ground (324) provides a common ground (324) for both the HF and LF matching circuits. The substrate (102) is shaped with a tabular portion (106) which facilitates encasing the substrate (102) within a casing (118). The tabular portion (106) further provides an alignment feature for wrapping of a flexible radiating element about the casing and flexible antenna rod (126) to complete the antenna structure (100).
Abstract:
A method and apparatus for calibrating a force sensing touch screen panel includes determining calibration factors for the position sensing layers of the touch screen panel, and applying those calibration factors to adjust nominal resistance values for resistance components of the position sensing layers when force is applied to the touch screen panel. The calibration factors result in a more accurate determination of the resistance of a force sensing layer which changes resistance as a function of force applied to the touch screen panel. The resistance of the force sensing layer can be used to determine the force applied based on a curve relating force to resistance.