Abstract:
A broadband device (105) can detect a proximate narrowband transmission (152) from a narrowband communication device (145). The narrowband transmission (152) can be in close enough proximity (155) to at least one bearer channel of the broadband device (105) to result in interference on the narrowband reception (152) when the broadband device (105) is transmitting and the narrowband communication device (145) is concurrently receiving. Responsive to the detecting, the broadband device (105) can gate a broadband transmission (142) to ensure the broadband transmission (142) does not interfere with the proximate narrowband reception (152). In absence of detecting the narrowband transmission (152), the broadband transmission (142) from the broadband device (105) would not be gated.
Abstract:
Disclosed herein are methods and systems for identifying and reducing LTE-system coverage holes due to external interference. One embodiment takes the form of a process that includes receiving a signal in a first wireless band. The received signal comprises a signal of interest. The process also includes determining that a received signal quality of the signal of interest is less than a signal-quality threshold. The process also includes determining that the received signal quality of the signal of interest is less than the signal-quality threshold due to interference external to the first wireless band, and responsively attenuating the received signal. The process also includes demodulating the attenuated received signal to obtain the signal of interest.
Abstract:
Disclosed herein are methods and systems for embedding a supplementary data channel in OFDM-based communication systems. One embodiment takes the form of a process that includes obtaining a primary data signal that includes a given symbol, where the given symbol includes primary payload data prepended with a given cyclic prefix. The process also includes obtaining supplementary payload data. The process also includes identifying an available portion of the given symbol. The process also includes generating a modified primary data signal at least in part by replacing the available portion of the given symbol with a subset of the supplementary payload data. The process also includes outputting the generated modified primary data signal for transmission via an air interface.
Abstract:
A method and apparatus for User Equipment (UE) power class adaptation for coverage extension in Long Term Evolution (LTE) includes setting a maximum transmit power to a predefined level that is below a maximum capability of a high power UE (HPUE); responsive to determining, based on detected operating conditions local to the HPUE, that an increase in transmit range is required, raising the maximum transmit power towards or to the maximum capability of the HPUE; and subsequently transmitting at an operating transmit power at or below the maximum transmit power as a function of the detected operating conditions local to the HPUE. The method and apparatus allow the HPUE to infer how to configure its maximum power to mitigate interference to the same class of cells, without assistance from an Evolved Node B (eNB) and within the existing 3GPP LTE framework.