Abstract:
Smart handcuffs are provided herein as part of a personal-area-network (PAN) along with a method for operating the smart handcuffs and the PAN. During operation smart handcuffs will pair with a first PAN master device. An alarm will sound when no system identification (SSID) is detected by the handcuffs, when no SSID is detected by the handcuffs that matches SSIDs within an internal database, when the handcuffs have broken the pairing with the first PAN master device, and the handcuffs have not paired or are not pairing with a second PAN, or when the handcuffs have broken the pairing with the first PAN master device, and no update from the handcuffs has been received by the first master device that the handcuffs have paired or will pair with the second PAN.
Abstract:
A process for triggering and propagating a covert mode status change using configuration protocol data includes, while a computing device is in a non-covert mode, maintaining one or more externally-perceivable output devices according to non-covert-configuration data of a non-covert profile; in response to detecting a trigger: changing the computing device to a covert mode; selecting a covert profile; controlling the externally-perceivable output devices according to covert-configuration data of the covert profile; and transmitting an instruction message to each of one or more second computing devices, the instruction message comprising: a status change message to place each of the one or more second computing devices in a respective covert mode; and covert-configuration protocol data mapped to the covert-configuration data of the covert profile, such that respective externally-perceivable output devices, at the one or more second computing devices, are controlled according to the covert-configuration protocol data.
Abstract:
Devices and methods for howling suppression. One method includes receiving, via a microphone, an acoustic signal from a communication device operating in an acoustic field with the microphone. The method includes determining a reflection pattern for the acoustic field based on the acoustic signal, and determining an acoustic characteristic for the acoustic field based on the reflection pattern. The method includes determining, based on the acoustic characteristic, a plurality of howling zones for the acoustic field, each zone defined by first and second proximity thresholds. The method includes, for each of the howling zones, determining an attenuation level for the zone based on the proximity thresholds and the acoustic characteristic. The method includes determining a distance between the microphone and the communication device, selecting one of the howling zones based on the distance, and adjusting a volume of a loudspeaker based on the attenuation level for the selected howling zone.
Abstract:
Methods and systems for controlling an object using a head-mounted display. One head-mounted display includes a display projector. The head-mounted display further includes an eye tracking assembly configured to monitor an eye. The head-mounted display further includes an electronic processor coupled to the display projector and the eye tracking assembly. The electronic processor is configured to determine a depth of field measurement of the eye and determine that the depth of field measurement is greater than a predetermined distance. The electronic processor is further configured to control the display projector to project a virtual line in response to determining that the depth of field measurement is greater than the predetermined distance. The virtual line is projected such that a length of the virtual line corresponds to a range of measurable depth of field measurements of the eye.
Abstract:
Methods and systems for controlling an object using a head-mounted display. One head-mounted display includes a display projector. The head-mounted display further includes an eye tracking assembly configured to monitor an eye. The head-mounted display further includes an electronic processor coupled to the display projector and the eye tracking assembly. The electronic processor is configured to determine a depth of field measurement of the eye and determine that the depth of field measurement is greater than a predetermined distance. The electronic processor is further configured to control the display projector to project a virtual line in response to determining that the depth of field measurement is greater than the predetermined distance. The virtual line is projected such that a length of the virtual line corresponds to a range of measurable depth of field measurements of the eye.
Abstract:
An audio framework for acoustic feedback suppression. One example portable communication device includes a microphone, a loudspeaker, and an electronic processor. The electronic processor receives an acoustic signal, including an audible component and an ultrasonic component, from the microphone. The electronic processor splits the acoustic signal into a first stream and a second stream identical to the first stream. The electronic processor is removes the ultrasonic component from the first stream to generate a filtered audio stream, and passes the filtered audio stream to a sound server. The electronic processor removes the audible component from the second stream to generate a received ultrasonic stream, and compares the received ultrasonic stream to a transmit ultrasonic stream to determine an acoustic distance. The electronic processor determines an attenuation level based on the acoustic distance, and adjusts an audio component of the portable communication device based on the attenuation level.
Abstract:
Method, device, and system for identifying a howling source and suppressing howling. One system includes a first communication device including a microphone, a first transceiver, and an electronic processor. The system also includes a second communication device including a second transceiver transmitting a radio signal and a speaker transmitting an acoustic signal. The electronic processor determines a first distance between the first communication device and the second communication device based on the radio signal received by the first transceiver. When the first distance is less than a first threshold, the electronic processor determines a second distance between the first communication device and the second communication device based on the acoustic signal received by the microphone. When the second distance is less than a second threshold, the electronic processor instructs at least one selected from the group consisting of the first communication device and the second communication device to suppress howling.
Abstract:
Disclosed herein are methods and systems for node operation according to network-wide resource-allocation schedules. One embodiment takes the form of a method carried out by a given node within an ad-hoc wireless network, which includes a controller node for a current time period. The method includes obtaining one or more air-interface resource requests for the current time period, where each obtained resource request indicates a requesting node and a requested resource. The method further includes using a network-standard algorithm for deriving a network-wide resource-allocation schedule for the current time period based at least in part on the obtained resource requests. The method further includes verifying the derived resource-allocation schedule based at least in part on a verification value derived by the controller node from the network-wide resource-allocation schedule using a network-standard verification function. The method also includes operating according to the verified resource-allocation schedule for the current time period.