Abstract:
An analysis system comprising a cartridge and an instrument being designed for operating the cartridge. The cartridge comprises a chamber sealed by a foil capable of protruding when the chamber is pressurized. The instrument comprises an analysis window and a detection portion designed for being crossed by a signal emitted from the chamber toward the instrument when the chamber is placed opposite the detection portion. The instrument further comprises docking means to place the chamber opposite the detection portion so that when the chamber is pressurized, the foil protrudes toward the detection portion. The analysis system is characterized in that it further comprises spacing means to ensure that, when the cartridge is docked on the instrument via the docking means and the chamber is pressurized, said spacing means ensure a gap between the foil and the detection portion.
Abstract:
The present invention relates to a method for performing a chemical and/or a biological assay comprising the following successive steps of: a) providing an assay device with a microchannel having an inlet and an outlet and further comprising restricting means designed to restrict the movement toward the outlet of microparticles introduced in the microchannel while letting a fluid to flow through the restricting means, b) introducing microparticles in the microchannel via the inlet, c) restricting the movement of said microparticles in the microchannel toward the outlet using restricting means, d) flowing a fluid sample through the microchannel, e) performing a biological and/or chemical read-out on each microparticle, the method further comprising the steps of: f) moving the microparticles in the microchannel, and g) repeating successively the steps d) and e).
Abstract:
A method for performing a chemical and/or a biological assay including the following successive steps of: a) providing an assay device with a microchannel having an inlet and an outlet and restricting means for restricting movement toward the outlet of microparticles introduced in the microchannel while letting a fluid to flow through the restricting means, b) introducing microparticles in the microchannel via the inlet, c) restricting the movement of said microparticles in the microchannel toward the outlet using the restricting means, d) flowing a fluid sample through the microchannel, and e) performing a biological and/or chemical read-out on each microparticle. The method also includes the steps of: f) moving the microparticles in the microchannel, and g) repeating successively the steps d) and e).