摘要:
A method includes: obtaining designated 3D template for a designated part in a heart; generating 3D annulus data representing an annulus of a heart valve identified as a reference of transformation, from a cross-section image in a plane passing through an axis within the annulus of the identified heart valve in 3D volume data generated from tomographic images; identifying a first point on the annulus of the identified heart valve in the designated 3D template and a second point on the annulus represented by the 3D annulus data; arranging n starting points from the first point on the annulus of the identified heart valve in the designated 3D template and n target points from the second point on the annulus represented by the 3D annulus data; and calculating movement destination coordinates of vertices of polygons relating to the designated 3D template to transform the designated 3D template.
摘要:
This method includes: generating data of a mask surface with respect to visualization data arranged in a virtual three-dimensional space, for calculation values at respective calculation points; identifying, from a first data storage storing, as time-series data, positions of the calculation points and calculation values at the calculation points, a first point whose position is closest to a predetermined point on the mask surface; reading out, from the first data storage, a position of the identified first point in each time; arranging the mask surface in each time based on a direction of a user's sight line and the read position in each time so as to make the mask surface perpendicular to the direction of the user's sight line and have the predetermined point on the mask surface arranged at the read position; and drawing polygon data of the visualization data and the mask surface in time series.
摘要:
A shape data generation method includes: identifying, from among a plural vertices of a first shape to be transformed, one or plural first vertices satisfying a predetermined condition including a condition that a normal line of a vertex to be processed crosses with a second shape that is a shape of a transformation target, which is identified from image data; transforming the first shape so as to move each of the one or plural identified first vertices a predetermined distance toward a corresponding normal direction of the identified first vertex; and storing data concerning the plural vertices of the transformed first shape after the identifying and the transforming are executed the predetermined number of times.
摘要:
A disclosed method is a shape data generation method including: identifying, from among a plural vertices of a first shape to be transformed, one or plural first vertices satisfying a predetermined condition including a condition that a normal line of a vertex to be processed crosses with a second shape that is a shape of a transformation target, which is identified from image data; transforming the first shape so as to move each of the one or plural identified first vertices a predetermined distance toward a corresponding normal direction of the identified first vertex; and storing data concerning the plural vertices of the transformed first shape after the identifying and the transforming are executed the predetermined number of times.
摘要:
A fluid structure interaction simulation method includes a graph information forming process to form graph information of nodes obtained by discretising a computing region for each of a fluid and a structure that are represented by meshes, and a main time development loop process to simulate a physical phenomenon. The loop process includes arranging IMEs (Interaction Mediating Elements) that move with a displacement of the structure, on a boundary of the structure, defining, within the IME, correcting functions of a pressure and a velocity of the fluid that interact with the pressure and the velocity of the fluid and the displacement of the structure, and executing a simulation based on the correcting functions, in a state in which the meshes of the fluid are mismatched to the meshes of the structure.
摘要:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
摘要:
A fluid structure interaction simulation method includes a graph information forming process to form graph information of nodes obtained by discretizing a computing region for each of a fluid and a structure that are represented by meshes, and a main time development loop process to simulate a physical phenomenon. The loop process includes arranging IMEs (Interaction Mediating Elements) that move with a displacement of the structure, on a boundary of the structure, defining, within the IME, correcting functions of a pressure and a velocity of the fluid that interact with the pressure and the velocity of the fluid and the displacement of the structure, and executing a simulation based on the correcting functions, in a state in which the meshes of the fluid are mismatched to the meshes of the structure.
摘要:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.
摘要:
The disclosed method includes: carrying out scale conversion for a first pixel value of each of a plurality of pixels included in an image to generate a second pixel value of the plurality of pixels; applying a reaction-diffusion equation including a diffusion element and a reaction element that is set according to at least the number of types of regions to be extracted, to the second pixel value of each of plural pixels within a certain region of the image a predetermined number of times to generate a third pixel value of each of the plurality of pixels included in the image; and carrying out scale inverse-conversion that is inverse-conversion of the scale conversion, for the third pixel value of each of the plurality of pixels included in the image to generate a fourth pixel value of the plurality of pixels.
摘要:
A modeling device is disclosed that easily projects characteristic information obtained from an object onto a differently-shaped object, even if the object, from which the characteristic information is obtained, has a complex shape. A modeling device in one embodiment of the present invention includes a virtually electrifying section to calculate an electric potential at a spot in a heart at the time when a predetermined voltage is applied to the heart, and a projecting section to project a fiber orientation onto a heart model created on the basis of shape information that is input to the input section. The projecting section specifies a spot to be a target of projection on the basis of the electric potential obtained by the virtually electrifying section. Use of the electric potential in specifying the spot makes it possible to easily project the fiber orientation onto any heart having complex and various shapes.