Image-Based Detection Using Hierarchical Learning
    3.
    发明申请
    Image-Based Detection Using Hierarchical Learning 有权
    基于图像的检测使用分层学习

    公开(公告)号:US20130136322A1

    公开(公告)日:2013-05-30

    申请号:US13553860

    申请日:2012-07-20

    IPC分类号: G06K9/00

    摘要: Systems and methods are provided for detecting anatomical components in images. In accordance with one implementation, at least one anchor landmark is detected in an image. The position of the anchor landmark is used to detect at least one bundle landmark in the image. In accordance with another implementation, at least two neighboring landmarks are detected in an image, and used to detect at least one anatomical primitive in the image.

    摘要翻译: 提供了用于检测图像中的解剖组件的系统和方法。 根据一个实施方式,在图像中检测至少一个锚地标。 锚地标的位置用于检测图像中的至少一个束标记。 根据另一实现方式,在图像中检测至少两个相邻的界标,并且用于检测图像中的至少一个解剖图元。

    Anatomical Primitive Detection
    4.
    发明申请
    Anatomical Primitive Detection 有权
    解剖原始检测

    公开(公告)号:US20100034440A1

    公开(公告)日:2010-02-11

    申请号:US12507991

    申请日:2009-07-23

    IPC分类号: G06K9/00

    摘要: A method of detecting an anatomical primitive in an image volume includes detecting a plurality of transformationally invariant points (TIPS) in the volume, aligning the volume using the TIPs, detecting a plurality landmark points in the aligned volume that are indicative of a given anatomical object, and fitting a target geometric primitive as the anatomical primitive based using the detected landmark points.

    摘要翻译: 检测图像体积中的解剖学原语的方法包括检测体积中的多个变形不变点(TIPS),使用TIP对齐体积,检测对准的体积中指示给定解剖对象的多个界标点 并且使用检测到的地标点将目标几何基元拟合为解剖基元。

    Adaptive Anatomical Region Prediction
    5.
    发明申请
    Adaptive Anatomical Region Prediction 有权
    自适应解剖区域预测

    公开(公告)号:US20140161337A1

    公开(公告)日:2014-06-12

    申请号:US14096206

    申请日:2013-12-04

    IPC分类号: G06K9/62 G06T7/00

    摘要: Disclosed herein is a framework for facilitating adaptive anatomical region prediction. In accordance with one aspect, a set of exemplar images including annotated first landmarks is received. User definitions of first anatomical regions in the exemplar images are obtained. The framework may detect second landmarks in a subject image. It may further compute anatomical similarity scores between the subject image and the exemplar images based on the first and second landmarks, and predict a second anatomical region in the subject image by adaptively combining the first anatomical regions based on the anatomical similarity scores.

    摘要翻译: 本文公开了一种用于促进适应性解剖区域预测的框架。 根据一个方面,接收包括注释的第一地标的一组示例图像。 获得示例图像中的第一解剖区域的用户定义。 框架可以检测主题图像中的第二地标。 它还可以基于第一和第二界标进一步计算对象图像和样本图像之间的解剖学相似性得分,并且基于解剖学相似性得分来自适应地组合第一解剖区域来预测对象图像中的第二解剖区域。

    Adaptive anatomical region prediction
    6.
    发明授权
    Adaptive anatomical region prediction 有权
    自适应解剖区域预测

    公开(公告)号:US09336457B2

    公开(公告)日:2016-05-10

    申请号:US14096206

    申请日:2013-12-04

    IPC分类号: G06K9/62 G06T7/00

    摘要: Disclosed herein is a framework for facilitating adaptive anatomical region prediction. In accordance with one aspect, a set of exemplar images including annotated first landmarks is received. User definitions of first anatomical regions in the exemplar images are obtained. The framework may detect second landmarks in a subject image. It may further compute anatomical similarity scores between the subject image and the exemplar images based on the first and second landmarks, and predict a second anatomical region in the subject image by adaptively combining the first anatomical regions based on the anatomical similarity scores.

    摘要翻译: 本文公开了一种用于促进适应性解剖区域预测的框架。 根据一个方面,接收包括注释的第一地标的一组示例图像。 获得示例图像中的第一解剖区域的用户定义。 框架可以检测主题图像中的第二地标。 它还可以基于第一和第二界标进一步计算对象图像和样本图像之间的解剖学相似性得分,并且基于解剖学相似性得分来自适应地组合第一解剖区域来预测对象图像中的第二解剖区域。

    Image-based detection using hierarchical learning
    7.
    发明授权
    Image-based detection using hierarchical learning 有权
    基于图像的检测采用分层学习

    公开(公告)号:US08958614B2

    公开(公告)日:2015-02-17

    申请号:US13553860

    申请日:2012-07-20

    IPC分类号: G06K9/00 G06K9/34 G06K9/62

    摘要: Systems and methods are provided for detecting anatomical components in images. In accordance with one implementation, at least one anchor landmark is detected in an image. The position of the anchor landmark is used to detect at least one bundle landmark in the image. In accordance with another implementation, at least two neighboring landmarks are detected in an image, and used to detect at least one anatomical primitive in the image.

    摘要翻译: 提供了用于检测图像中的解剖组件的系统和方法。 根据一个实施方式,在图像中检测至少一个锚地标。 锚地标的位置用于检测图像中的至少一个束标记。 根据另一实现方式,在图像中检测至少两个相邻的界标,并且用于检测图像中的至少一个解剖图元。

    Anatomical primitive detection
    8.
    发明授权
    Anatomical primitive detection 有权
    解剖原始检测

    公开(公告)号:US08406494B2

    公开(公告)日:2013-03-26

    申请号:US12507991

    申请日:2009-07-23

    IPC分类号: G06K9/00 G06K9/32

    摘要: A method of detecting an anatomical primitive in an image volume includes detecting a plurality of transformationally invariant points (TIPS) in the volume, aligning the volume using the TIPs, detecting a plurality landmark points in the aligned volume that are indicative of a given anatomical object, and fitting a target geometric primitive as the anatomical primitive based using the detected landmark points.

    摘要翻译: 检测图像体积中的解剖学原语的方法包括检测体积中的多个变形不变点(TIPS),使用TIP对齐体积,检测对准的体积中指示给定解剖对象的多个界标点 并且使用检测到的地标点将目标几何基元拟合为解剖基元。

    Hierarchical classifier for data classification
    9.
    发明授权
    Hierarchical classifier for data classification 有权
    用于数据分类的分层分类器

    公开(公告)号:US08331699B2

    公开(公告)日:2012-12-11

    申请号:US12887640

    申请日:2010-09-22

    IPC分类号: G06K9/68 G06K9/62

    摘要: Described herein is a framework for constructing a hierarchical classifier for facilitating classification of digitized data. In one implementation, a divergence measure of a node of the hierarchical classifier is determined. Data at the node is divided into at least two child nodes based on a splitting criterion to form at least a portion of the hierarchical classifier. The splitting criterion is selected based on the divergence measure. If the divergence measure is less than a predetermined threshold value, the splitting criterion comprises a divergence-based splitting criterion which maximizes subsequent divergence after a split. Otherwise, the splitting criterion comprises an information-based splitting criterion which seeks to minimize subsequent misclassification error after the split.

    摘要翻译: 这里描述了用于构建用于促进数字化数据的分类的分级分类器的框架。 在一个实现中,确定分级分类器的节点的发散度量度。 基于分割标准将节点处的数据划分为至少两个子节点,以形成分级分类器的至少一部分。 基于分歧度量选择分割标准。 如果发散度小于预定阈值,则分割标准包括基于发散的分裂标准,其使分裂后的随后发散最大化。 否则,分割标准包括基于信息的分割标准,其寻求在分裂之后使随后的错误分类错误最小化。

    HIERARCHICAL CLASSIFIER FOR DATA CLASSIFICATION
    10.
    发明申请
    HIERARCHICAL CLASSIFIER FOR DATA CLASSIFICATION 有权
    用于数据分类的分层分类器

    公开(公告)号:US20110044534A1

    公开(公告)日:2011-02-24

    申请号:US12887640

    申请日:2010-09-22

    IPC分类号: G06K9/62

    摘要: Described herein is a framework for constructing a hierarchical classifier for facilitating classification of digitized data. In one implementation, a divergence measure of a node of the hierarchical classifier is determined. Data at the node is divided into at least two child nodes based on a splitting criterion to form at least a portion of the hierarchical classifier. The splitting criterion is selected based on the divergence measure. If the divergence measure is less than a predetermined threshold value, the splitting criterion comprises a divergence-based splitting criterion which maximizes subsequent divergence after a split. Otherwise, the splitting criterion comprises an information-based splitting criterion which seeks to minimize subsequent misclassification error after the split.

    摘要翻译: 这里描述了用于构建用于促进数字化数据的分类的分级分类器的框架。 在一个实现中,确定分级分类器的节点的发散度量度。 基于分割标准将节点处的数据划分为至少两个子节点,以形成分级分类器的至少一部分。 基于分歧度量选择分割标准。 如果发散度小于预定阈值,则分割标准包括基于发散的分裂标准,其使分裂后的随后发散最大化。 否则,分割标准包括基于信息的分割标准,其寻求在分裂之后使随后的错误分类错误最小化。