-
公开(公告)号:US20100232686A1
公开(公告)日:2010-09-16
申请号:US12723909
申请日:2010-03-15
申请人: Maneesh Dewan , Yiqiang Zhan , Xiang Sean Zhou , Zhao Yi
发明人: Maneesh Dewan , Yiqiang Zhan , Xiang Sean Zhou , Zhao Yi
CPC分类号: G06K9/6219 , G06K9/6209 , G06K2209/051 , G06T7/12 , G06T7/149 , G06T7/174 , G06T2207/20081 , G06T2207/30004
摘要: Described herein is a technology for facilitating deformable model-based segmentation of image data. In one implementation, the technology includes receiving training image data (202) and automatically constructing a hierarchical structure (204) based on the training image data. At least one spatially adaptive boundary detector is learned based on a node of the hierarchical structure (206).
摘要翻译: 这里描述的是用于促进图像数据的基于可变形模型的分割的技术。 在一个实现中,该技术包括基于训练图像数据接收训练图像数据(202)并自动构建分层结构(204)。 基于分层结构的节点(206),学习至少一个空间自适应边界检测器。
-
公开(公告)号:US08577130B2
公开(公告)日:2013-11-05
申请号:US12723909
申请日:2010-03-15
申请人: Maneesh Dewan , Yiqiang Zhan , Xiang Sean Zhou , Zhao Yi
发明人: Maneesh Dewan , Yiqiang Zhan , Xiang Sean Zhou , Zhao Yi
IPC分类号: G06K9/62
CPC分类号: G06K9/6219 , G06K9/6209 , G06K2209/051 , G06T7/12 , G06T7/149 , G06T7/174 , G06T2207/20081 , G06T2207/30004
摘要: Described herein is a technology for facilitating deformable model-based segmentation of image data. In one implementation, the technology includes receiving training image data (202) and automatically constructing a hierarchical structure (204) based on the training image data. At least one spatially adaptive boundary detector is learned based on a node of the hierarchical structure (206).
摘要翻译: 这里描述的是用于促进图像数据的基于可变形模型的分割的技术。 在一个实现中,该技术包括基于训练图像数据接收训练图像数据(202)并自动构建分层结构(204)。 基于分层结构的节点(206),学习至少一个空间自适应边界检测器。
-
公开(公告)号:US08331699B2
公开(公告)日:2012-12-11
申请号:US12887640
申请日:2010-09-22
CPC分类号: G06K9/6219 , G06K9/6209 , G06K2209/051
摘要: Described herein is a framework for constructing a hierarchical classifier for facilitating classification of digitized data. In one implementation, a divergence measure of a node of the hierarchical classifier is determined. Data at the node is divided into at least two child nodes based on a splitting criterion to form at least a portion of the hierarchical classifier. The splitting criterion is selected based on the divergence measure. If the divergence measure is less than a predetermined threshold value, the splitting criterion comprises a divergence-based splitting criterion which maximizes subsequent divergence after a split. Otherwise, the splitting criterion comprises an information-based splitting criterion which seeks to minimize subsequent misclassification error after the split.
摘要翻译: 这里描述了用于构建用于促进数字化数据的分类的分级分类器的框架。 在一个实现中,确定分级分类器的节点的发散度量度。 基于分割标准将节点处的数据划分为至少两个子节点,以形成分级分类器的至少一部分。 基于分歧度量选择分割标准。 如果发散度小于预定阈值,则分割标准包括基于发散的分裂标准,其使分裂后的随后发散最大化。 否则,分割标准包括基于信息的分割标准,其寻求在分裂之后使随后的错误分类错误最小化。
-
公开(公告)号:US20110044534A1
公开(公告)日:2011-02-24
申请号:US12887640
申请日:2010-09-22
IPC分类号: G06K9/62
CPC分类号: G06K9/6219 , G06K9/6209 , G06K2209/051
摘要: Described herein is a framework for constructing a hierarchical classifier for facilitating classification of digitized data. In one implementation, a divergence measure of a node of the hierarchical classifier is determined. Data at the node is divided into at least two child nodes based on a splitting criterion to form at least a portion of the hierarchical classifier. The splitting criterion is selected based on the divergence measure. If the divergence measure is less than a predetermined threshold value, the splitting criterion comprises a divergence-based splitting criterion which maximizes subsequent divergence after a split. Otherwise, the splitting criterion comprises an information-based splitting criterion which seeks to minimize subsequent misclassification error after the split.
摘要翻译: 这里描述了用于构建用于促进数字化数据的分类的分级分类器的框架。 在一个实现中,确定分级分类器的节点的发散度量度。 基于分割标准将节点处的数据划分为至少两个子节点,以形成分级分类器的至少一部分。 基于分歧度量选择分割标准。 如果发散度小于预定阈值,则分割标准包括基于发散的分裂标准,其使分裂后的随后发散最大化。 否则,分割标准包括基于信息的分割标准,其寻求在分裂之后使随后的错误分类错误最小化。
-
-
-