摘要:
A process is disclosed for the leaching of gold and silver from ores and ore concentrates through intimate contact of the ore or ore concentrate with an aqueous leach solution containing cyanide. The leach solution has a pH of 8 to 13. The leaching process takes place in the presence of an oxygen-releasing peroxo compound. The separation of the formed cyano complexes of gold and silver takes place in a known manner. During leaching, at least one peroxoborate compound is present, in an effective quantity, as the peroxo compound. The peroxoborate is preferably a sodium or calcium peroxoborate. Compared to previously known leaching techniques in the presence of hydrogen peroxide or calcium peroxide, the leaching process according to the present invention provides a higher and/or faster precious metal yield and/or minimizes the consumption of cyanide and/or oxidizing agent.
摘要:
A process for leaching gold and silver from ores and ore concentrates is disclosed using a cyanide leaching solution and hydrogen peroxide and maintaining an oxygen concentration of 2 to 20 Mg of O.sub.2 /liter. In the invention, leaching takes place in the presence of decomposition catalysts and preferably the formed cyano-complexes are separated during leaching from the leach solution. Decomposition catalysts are manganese compounds, present as 0.01 to 1 mg computed as Mn/liter of barren solution, or 1 to 50 mg computed as Mn per kg of ore slurry, or they are inorganic or organic polymers or carbon. Activated charcoal is preferred and simultaneously adsorbing cyano-complexes of precious metals. The process offers lowered consumption of H.sub.2 O.sub.2 and possibly cyanide and maximum gold yield in a shortened leaching time.
摘要:
A process is described for leaching gold and/or silver from ores or ore concentrates using an aqueous alkaline cyanide solution with addition of hydrogen peroxide. The addition of the aqueous H.sub.2 O.sub.2 solution is regulated and controlled through the concentration of the oxygen dissolved in the leaching solution, the leaching solution containing from 2 to 20 mg O.sub.2 and preferably from 7 to 13 mg O.sub.2 per liter. 0.5 to 5% by weight H.sub.2 O.sub.2 solutions are preferably added. The process is applicable both to leaching by agitation and to heap leaching, the addition of H.sub.2 O.sub.2 being regulated and controlled through measurement of the O.sub.2 concentration in the leaching solution and can also involve measurement in a measuring stream. Despite low consumptions of H.sub.2 O.sub.2 and NaCN, the gold yield is even increased in some cases and the leaching time shortened.
摘要翻译:描述了一种使用加入过氧化氢的碱性氰化物水溶液从矿石或精矿中浸出金和/或银的方法。 通过溶解在浸出溶液中的氧浓度调节和控制H 2 O 2水溶液的添加,浸出溶液含有2至20mg O 2,优选7至13mg O 2 /升。 优选加入0.5-5重量%的H 2 O 2溶液。 该方法适用于通过搅拌和堆浸浸出,通过测量浸出溶液中的O 2浓度来调节和控制H 2 O 2的添加,并且还可以涉及测量流中的测量。 尽管H2O2和NaCN的消耗量很低,但在某些情况下,金的产量甚至增加,浸出时间缩短。
摘要:
New alkali metal cyanide granulates based on sodium cyanide or potassium cyanide and a method for their preparation are disclosed. Commercially available alkali metal cyanide granulates consist of irregular particles; disadvantages are in particular the tendencies to form dust and to cake. The disclosed alkali metal cyanide granulates demonstrate a reduced tendency to cake and virtually no abrasion. The granulates are characterized by essentially spherical particles with particle diameters in the range 0.1 to 20 mm, a bulk density of more than 600 g/dm.sup.3, an abrasion of less than 1%, and a caking index of at most 4. The granulates can be prepared by fluidized bed spray granulation involving spraying an aqueous solution containing alkali metal cyanide onto alkali metal cyanide nuclei in a fluidized bed and evaporating the water.