MRI method for correcting amplitude of resonance signals
    3.
    发明授权
    MRI method for correcting amplitude of resonance signals 失效
    用于校正谐振信号幅度的MRI方法

    公开(公告)号:US06897653B2

    公开(公告)日:2005-05-24

    申请号:US09992699

    申请日:2001-11-14

    CPC分类号: G01R33/56518

    摘要: In a magnetic resonance imaging method flow quantities and diffusion quantities are measured in the presence of temporary magnetic gradient fields (gradient pulses). Signal amplitudes of the magnetic resonance signals and/or flow and diffusion quantities calculated from the magnetic resonance signals are corrected for non-linearities in the magnetic gradient fields.

    摘要翻译: 在磁共振成像方法中,在临时磁梯度场(梯度脉冲)的存在下测量流量和扩散量。 根据磁共振信号计算的磁共振信号和/或流量和扩散量的信号幅度被校正为磁梯度场中的非线性。

    Moving table MRI with subsampling in parallel
    5.
    发明授权
    Moving table MRI with subsampling in parallel 失效
    移动表MRI并行采样

    公开(公告)号:US07417429B2

    公开(公告)日:2008-08-26

    申请号:US10547196

    申请日:2004-02-18

    IPC分类号: G01V3/00

    CPC分类号: G01R33/56375 G01R33/5611

    摘要: A novel magnetic resonance imaging method is described, for forming an image of an object from a plurality of signals sampled in a restricted homogeneity region of a main magnet field of a magnetic resonance imaging apparatus. A patient disposed on a table is moved continuously through the bore of the main magnet and spins in a predetermined area of the patient are excited by an excitation pulse from a transmitter antenna, such that an image is formed over a region exceeding largely the restricted region. Data is undersampled in the restricted region by means off at least one receiver antenna in a plurality of receive situations being defined as a block of measurements contiguous in time having preserved magnetisation and presaturation conditions within the excited area of the patient. Fold-over artefacts due to said undersampling are unfolded by means of the known sensitivity pattern of the receiver antenna and/or the properties of selected factors determining said receive situations.

    摘要翻译: 描述了一种新颖的磁共振成像方法,用于从在磁共振成像装置的主磁场的受限同质区域中采样的多个信号形成物体的图像。 设置在桌子上的患者连续移动通过主磁体的孔并且在患者的预定区域中的旋转被来自发射器天线的激励脉冲激发,使得在超过大部分限制区域的区域上形成图像 。 通过在多个接收情况中的至少一个接收机天线被限定为在时间上相邻的测量块,其在患者的激动区域内保持了磁化和预饱和状态,因此在受限区域中数据被欠采样。 由于所述欠采样引起的折叠伪影通过接收机天线的已知灵敏度图案和/或确定所述接收情况的选定因素的特性而展开。

    Moving Table Mri
    6.
    发明申请
    Moving Table Mri 审中-公开
    移动表Mri

    公开(公告)号:US20080262340A1

    公开(公告)日:2008-10-23

    申请号:US11569069

    申请日:2005-05-12

    IPC分类号: A61B5/055 G01R33/563

    CPC分类号: G01R33/56375

    摘要: The invention relates to a MRI system and to a method for producing an image with such an system. In order to provide a MR imaging technique with a high efficient MR signal acquisition, which provides a high level of comfort to a patient, a MRI system and method are suggested, where image data from an object are acquired while the object is moving with variable speed relative to the MRI system, and where the image data are combined and an image of the object is reconstructed.

    摘要翻译: 本发明涉及一种MRI系统和一种用这种系统生产图像的方法。 为了提供具有高效MR信号采集的MR成像技术,其为患者提供高水平的舒适性,建议了MRI系统和方法,其中在物体运动时获取来自对象的图像数据, 相对于MRI系统的速度,并且其中图像数据被组合并且重建对象的图像。

    Mri System Comprising a Scan Room Inferface for A/D-Conversion of Mr Signals Between a Receiver Coil Unit and a Remote Signal Processing Unit
    7.
    发明申请
    Mri System Comprising a Scan Room Inferface for A/D-Conversion of Mr Signals Between a Receiver Coil Unit and a Remote Signal Processing Unit 有权
    包含扫描室的Mri系统接收器线圈单元和远程信号处理单元之间的信号的A / D转换的表面

    公开(公告)号:US20080191695A1

    公开(公告)日:2008-08-14

    申请号:US11909164

    申请日:2006-03-20

    IPC分类号: G01R33/36

    摘要: The present invention relates to a magnetic resonance imaging system, to a magnetic resonance imaging method for operating a magnetic resonance imaging system and to a computer program for operating a magnetic resonance imaging system. In order to considerably reduce the number of cabling in a magnetic resonance imaging system a magnetic resonance imaging system (1) is suggested, the system comprising: an examination zone (5) arranged to receive a body for examination; magnetic field generating means (9, 10, 24) for generating a magnetic field in the examination zone (5); a receiving unit (14) located in the examination zone (5) or in the vicinity of the examination zone (5); an interface unit (17) located in the examination zone (5) or in the vicinity of the examination zone (5), and arranged separately from the receiving unit (14); and a signal processing unit (21) disposed at a location (2) remote from the receiving unit (14) and the interface unit (17); wherein the receiving unit (14) comprising a receiver (15) adapted to receive a spin resonance signal generated in the examination zone (5), and a transmitter (16) adapted to transmit the spin resonance signal to the interface unit (17); and wherein the interface unit (17) comprises a receiver (20) for receiving the spin resonance signals, an analog to digital converter (19) adapted to generate a digital signal in response to the received spin resonance signal, and a transmitter (20) for transmitting the digitized signal to the signal processing unit (21).

    摘要翻译: 磁共振成像系统技术领域本发明涉及一种用于操作磁共振成像系统的磁共振成像方法和用于操作磁共振成像系统的计算机程序的磁共振成像系统。 为了大大减少磁共振成像系统中的电缆数量,建议使用磁共振成像系统(1),该系统包括:检查区域(5),布置成接收检查体; 用于在检查区(5)中产生磁场的磁场产生装置(9,10,24); 位于检查区(5)或检查区(5)附近的接收单元(14); 位于所述检查区域(5)中或所述检查区域(5)附近的接口单元(17),并且与所述接收单元(14)分开布置; 以及设置在远离所述接收单元(14)和所述接口单元(17)的位置(2)处的信号处理单元(21)。 其中所述接收单元(14)包括适于接收在所述检查区(5)中产生的自旋共振信号的接收器(15)和适于将所述自旋共振信号传输到所述接口单元(17)的发射器(16)。 并且其中所述接口单元(17)包括用于接收所述自旋谐振信号的接收器(20),适于响应于所接收的自旋谐振信号产生数字信号的模数转换器(19),以及发射器(20) 用于将数字化信号发送到信号处理单元(21)。

    MRI system comprising a scan room interface for A/D-conversion of MR signals between a receiver coil unit and a remote signal processing unit
    8.
    发明授权
    MRI system comprising a scan room interface for A/D-conversion of MR signals between a receiver coil unit and a remote signal processing unit 有权
    MRI系统包括用于在接收器线圈单元和远程信号处理单元之间进行MR信号的A / D转换的扫描室接口

    公开(公告)号:US07746072B2

    公开(公告)日:2010-06-29

    申请号:US11909164

    申请日:2006-03-20

    IPC分类号: G01V3/00

    摘要: The present invention relates to a magnetic resonance imaging system, to a magnetic resonance imaging method for operating a magnetic resonance imaging system and to a computer program for operating a magnetic resonance imaging system. In order to considerably reduce the number of cabling in a magnetic resonance imaging system a magnetic resonance imaging system (1) is suggested, the system comprising: an examination zone (5) arranged to receive a body for examination; magnetic field generating means (9, 10, 24) for generating a magnetic field in the examination zone (5); a receiving unit (14) located in the examination zone (5) or in the vicinity of the examination zone (5); an interface unit (17) located in the examination zone (5) or in the vicinity of the examination zone (5), and arranged separately from the receiving unit (14); and a signal processing unit (21) disposed at a location (2) remote from the receiving unit (14) and the interface unit (17); wherein the receiving unit (14) comprising a receiver (15) adapted to receive a spin resonance signal generated in the examination zone (5), and a transmitter (16) adapted to transmit the spin resonance signal to the interface unit (17); and wherein the interface unit (17) comprises a receiver (20) for receiving the spin resonance signals, an analog to digital converter (19) adapted to generate a digital signal in response to the received spin resonance signal, and a transmitter (20) for transmitting the digitized signal to the signal processing unit (21).

    摘要翻译: 磁共振成像系统技术领域本发明涉及一种用于操作磁共振成像系统的磁共振成像方法和用于操作磁共振成像系统的计算机程序的磁共振成像系统。 为了大大减少磁共振成像系统中的电缆数量,建议使用磁共振成像系统(1),该系统包括:检查区域(5),布置成接收检查体; 用于在检查区(5)中产生磁场的磁场产生装置(9,10,24); 位于检查区(5)或检查区(5)附近的接收单元(14); 位于所述检查区域(5)中或所述检查区域(5)附近的接口单元(17),并且与所述接收单元(14)分开布置; 以及设置在远离所述接收单元(14)和所述接口单元(17)的位置(2)处的信号处理单元(21)。 其中所述接收单元(14)包括适于接收在所述检查区(5)中产生的自旋共振信号的接收器(15)和适于将所述自旋共振信号传输到所述接口单元(17)的发射器(16)。 并且其中所述接口单元(17)包括用于接收所述自旋谐振信号的接收器(20),适于响应于所接收的自旋谐振信号产生数字信号的模数转换器(19),以及发射器(20) 用于将数字化信号发送到信号处理单元(21)。

    MRI OF A CONTINUOUSLY MOVING OBJECT INVOLVING MOTION COMPENSATION
    9.
    发明申请
    MRI OF A CONTINUOUSLY MOVING OBJECT INVOLVING MOTION COMPENSATION 审中-公开
    涉及运动补偿的连续移动对象的MRI

    公开(公告)号:US20090177076A1

    公开(公告)日:2009-07-09

    申请号:US12296936

    申请日:2007-04-05

    IPC分类号: A61B5/05

    摘要: A magnetic resonance examination system has an object carrier (14) to move an object to be examined relative to the field of view. A monitoring system (33) monitors examination circumstances under which magnetic resonance signals are acquired from the object within the field of view. In particular the monitoring system monitors the degree of physiological motion in the patient to be examined. A velocity control system (32) to control the velocity of the movement of the object relative to the field of view and to control the velocity on the basis of the monitored examination circumstances, i.e. the degree of physiological motion.

    摘要翻译: 磁共振检查系统具有用于相对于视场移动待检查物体的物体载体(14)。 监视系统(33)监视从视野内的物体获取磁共振信号的检查情况。 特别地,监测系统监测待检查患者的生理运动程度。 一种速度控制系统(32),用于控制物体相对于视场的移动速度,并且基于所监视的检查情况即生理运动的程度来控制速度。

    Magnetic resonance imaging method involving sub-sampling
    10.
    发明授权
    Magnetic resonance imaging method involving sub-sampling 有权
    磁共振成像方法涉及次采样

    公开(公告)号:US07215190B2

    公开(公告)日:2007-05-08

    申请号:US10496388

    申请日:2002-11-20

    IPC分类号: G01V3/00

    摘要: In a magnetic resonance imaging method magnetic resonance signal samples are received for a predetermined field of view by a receiving antenna having a spatial sensitivity profile. The sampling in the k space corresponds to the predetermined field of view in the geometrical space. Folded-over images having folded-over pixel values are reconstructed from the sampled magnetic resonance signals. Pixel contributions for spatial positions within the predetermined field of view are calculated from the folded-over pixel values and the spatial sensitivity profile of the receiver antenna. The magnetic resonance image is formed from the pixel contributions for spatial positions within the predetermined field of view. Thus, aliasing or fold-over artefacts caused by a field of view that is too small are avoided.

    摘要翻译: 在磁共振成像方法中,通过具有空间灵敏度分布的接收天线,对于预定的视场来接收磁共振信号样本。 k空间中的采样对应于几何空间中的预定视场。 从采样的磁共振信号重建具有折叠像素值的折叠图像。 根据接收天线的折叠像素值和空间灵敏度曲线计算预定视场内的空间位置的像素贡献。 磁共振图像由预定视野内的空间位置的像素贡献形成。 因此,避免了由视场太小引起的混叠或折叠伪影。