Method for tracking targets with hyper-spectral data
    1.
    发明授权
    Method for tracking targets with hyper-spectral data 有权
    用超光谱数据跟踪目标的方法

    公开(公告)号:US07212652B1

    公开(公告)日:2007-05-01

    申请号:US10614433

    申请日:2003-07-07

    IPC分类号: G06K9/00

    摘要: In the present invention, the histogram model used in H-PMHT is extended to treat the problem of tracking using hyper-spectral data. Completely general spectral density functions are handled via the use of non-parametric methods. The present invention is not restricted to derivations based on knowledge of the spectral character of the source being tracked. The source spectrum can be estimated in a non-parametric fashion based on an initial track, and this allows the invention to adapt to the source spectrum in situ. The resulting method has improved crossing track performance on sources that have some degree of spectral distinction and will perform no worse than regular H-PMHT on sources that have identical spectral densities.

    摘要翻译: 在本发明中,在H-PMHT中使用的直方图模型被扩展以处理使用超光谱数据的跟踪问题。 完全一般的频谱密度函数通过使用非参数方法来处理。 本发明不限于基于正在被跟踪的源的光谱特征的知识的导出。 源光谱可以基于初始轨迹以非参数方式估计,并且这允许本发明原位适应源光谱。 所得到的方法在具有一定程度的光谱区别的源上改进了交叉轨迹性能,并且在具有相同光谱密度的源上将不会比常规H-PMHT更差。

    Recursive method for target motion analysis
    2.
    发明授权
    Recursive method for target motion analysis 失效
    目标运动分析的递归方法

    公开(公告)号:US5877998A

    公开(公告)日:1999-03-02

    申请号:US759357

    申请日:1996-11-18

    IPC分类号: G01S5/18 G01S11/14 G01S15/66

    CPC分类号: G01S5/18 G01S11/14

    摘要: The present invention relates to a method for estimating the motion of a get relative to an observer station and a system for performing the method. The method includes the steps of: generating data representative of the motion of the target relative to the observer station during first, second, and subsequent measurement legs; processing the data to yield smoothed estimate of the bearing, bearing rate, and bearing acceleration of the target during each measurement leg; and processing the smoothed estimates of the bearing, bearing rate, and bearing acceleration of the target to provide an estimate of the position of the target relative to the observer station and the velocity of the target. The system for performing the method includes a data preprocessing subsystem for generating the smoothed estimate of the bearing rate, bearing and bearing acceleration, a passive localization and target motion analysis subsystem, and a trajectory modelling subsystem having a first module for creating a model of the observer station motion and a second module for creating a model of the motion of the target.

    摘要翻译: 本发明涉及一种用于估计目标相对于观察站的运动的方法和用于执行该方法的系统。 该方法包括以下步骤:在第一,第二和随后的测量腿期间产生表示目标相对于观察站的运动的数据; 处理数据以产生在每个测量腿期间目标的轴承,承载速率和轴承加速度的平滑估计; 并且对目标的轴承,承载速度和轴承加速度的平滑估计进行处理,以提供目标相对于观察台的位置的估计和目标的速度。 用于执行该方法的系统包括:数据预处理子系统,用于产生轴承速率,轴承和轴承加速度的平滑估计,无源定位和目标运动分析子系统,以及具有第一模块的轨迹建模子系统,用于创建 观察台站运动和用于创建目标运动模型的第二模块。

    Enhanced adaptive statistical filter providing improved performance for
target motion analysis noise discrimination
    3.
    发明授权
    Enhanced adaptive statistical filter providing improved performance for target motion analysis noise discrimination 失效
    增强的自适应统计滤波器,可提高目标运动分析噪声识别的性能

    公开(公告)号:US5537368A

    公开(公告)日:1996-07-16

    申请号:US127145

    申请日:1993-09-22

    IPC分类号: G01S13/72 G01S15/66 H03H17/02

    摘要: An adaptive statistical filter system for receiving a data stream comprising a series of data values from a sensor associated with successive points in time. Each data value includes a data component representative of the motion of a target and a noise component, with the noise components of data values associated with proximate points in time being correlated. The adaptive statistical filter system includes a prewhitener module, a plurality of statistical filters of different orders and a selection module. The prewhitener module receives the data stream from the sensor and generates a corrected data stream comprising a series of corrected data values each associated with a data value of the data stream, each including a data component and a noise component with the noise components of data values associated with proximate points in time being decorrelated. The plural statistical filters are coupled to receive the corrected data stream in parallel from the prewhitener. Each statistical filter generates coefficient values to fit the corrected data stream to a polynomial of corresponding order and fit values representative of the degree of fit of corrected data stream to the polynomial. The selection module receives the fit values and coefficient values from the plural statistical filters and selects coefficient values from one of the filters in response to the fit values. The coefficient values are coupled to target motion analysis module which determines position and velocity of the target.

    摘要翻译: 一种自适应统计滤波器系统,用于接收包括与连续的时间点相关联的传感器的一系列数据值的数据流。 每个数据值包括表示目标的运动的数据分量和噪声分量,其中与近似时间点相关联的数据值的噪声分量相关。 自适应统计滤波器系统包括预白化模块,多个不同阶数的统计滤波器和选择模块。 预白化器模块从传感器接收数据流,并产生校正数据流,其包括与数据流的数据值相关联的一系列校正数据值,每个数据值包括数据分量和具有数据值的噪声分量的噪声分量 与相邻的时间点相关联被解相关。 多个统计滤波器被耦合以从预白化器并行地接收校正的数据流。 每个统计滤波器生成系数值以将校正数据流拟合到对应次序的多项式和表示校正数据流与多项式的拟合度的拟合值。 选择模块从多个统计滤波器接收拟合值和系数值,并响应于拟合值从一个滤波器中选择系数值。 系数值耦合到目标运动分析模块,该模块确定目标的位置和速度。

    Automatic data segmentation module for target motion analysis
applications
    4.
    发明授权
    Automatic data segmentation module for target motion analysis applications 失效
    用于目标运动分析应用的自动数据分割模块

    公开(公告)号:US5469374A

    公开(公告)日:1995-11-21

    申请号:US83404

    申请日:1993-06-23

    CPC分类号: G06T7/20 G01S7/539 G01S15/52

    摘要: A system having a device for comparing incoming data with hypotheses prevsly formed from prior data for providing new hypotheses on target information. It has application when the data source is from either single or multiple targets. The incoming datum to the system forms new hypotheses assuming the incoming datum is invalid, forms new hypotheses assuming the new datum begins a new segment of information, and forms new hypotheses assuming the new datum is associated with segments in prior retained hypotheses. The one hypothesis of the thusly formed new hypotheses with the greatest likelihood of target information is then selected for further analyzation and the hypothesis selected and other hypotheses are retained for further processing with new incoming datum.

    摘要翻译: 一种具有用于将输入数据与先前由先前数据形成的假设进行比较的装置的系统,用于提供关于目标信息的新假设。 当数据源来自单个或多个目标时,它具有应用程序。 系统的输入数据形成新假设,假设输入的数据无效,假设新数据开始一个新的信息段,形成新的假设,并且假设新数据与先前保留的假设中的段相关联,形成新假设。 然后选择具有最大目标信息可能性的如此形成的新假设的一个假设用于进一步的分析,并且选择的假设和其他假设被保留以便用新的传入数据进一步处理。

    Adaptive statistical filter providing improved performance for target
motion analysis noise discrimination
    5.
    发明授权
    Adaptive statistical filter providing improved performance for target motion analysis noise discrimination 失效
    自适应统计滤波器为目标运动分析噪声识别提供了改进的性能

    公开(公告)号:US5144595A

    公开(公告)日:1992-09-01

    申请号:US825909

    申请日:1992-01-27

    IPC分类号: G01S15/46 G06K9/00 H03H21/00

    摘要: The adaptive statistical filter providing improved performance target mot analysis noise discrimination of the present invention includes a bank of parallel Kalman filters. Each filter estimates a statistic vector of specific order, which in the exemplary third order bank of filters of the preferred embodiment, respectively constitute coefficients of a constant, linear and quadratic fit. In addition, each filter provides a sum-of-squares residuals performance index. A sequential comparator is disclosed that performs a likelihood ratio test performed pairwise for a given model order and the next lowest, which indicates whether the tested model orders provide significant information above the next model order. The optimum model order is selected based on testing the highest model orders. A robust, unbiased estimate of minimal rank for information retention providing computational efficiency and improved performance noise discrimination is therewith accomplished.

    摘要翻译: 提供本发明的改进的性能目标运动分析噪声鉴别的自适应统计滤波器包括一组并行卡尔曼滤波器。 每个滤波器估计特定次序的统计量向量,其在优选实施例的示例性三阶滤波器组中分别构成恒定的,线性的和二次拟合的系数。 另外,每个滤波器提供平方和残差性能指标。 公开了一种顺序比较器,其针对给定的模型顺序对成对执行似然比测试,并且指示下一个最低值,其指示测试的模型指令是否提供高于下一模型顺序的重要信息。 基于测试最高模型订单选择最佳模型订单。 由此实现了提供计算效率和改进的性能噪声辨别的信息保持的最小等级的鲁棒且无偏差的估计。