摘要:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.
摘要翻译:通过将至少一个操作数布置成具有相对较小的比特长度来提供有限域中的组操作的组合的加速计算。 在椭圆曲线组中,代表点R的值对应于其他两个点uG和vG的和的验证是通过导出比特长度减小的整数w,z获得的,并且使得v = w / z。 然后,验证等式R = uG + vQ可以被计算为-zR +(uz mod n)G + wQ = 0,其中z和w为减少的比特长度。 这在数字签名验证中是有益的,其中可以实现增加的验证。
摘要:
The present invention provides a new trapdoor one-way function. In a general sense, some quadratic algebraic integer z is used. One then finds a curve E and a rational map defining [z] on E. The rational map [z] is the trapdoor one-way function. A judicious selection of z will ensure that [z] can be efficiently computed, that it is difficult to invert, that determination of [z] from the rational functions defined by [z] is difficult, and knowledge of z allows one to invert [z] on a certain set of elliptic curve points. Every rational map is a composition of a translation and an endomorphism. The most secure part of the rational map is the endomorphism as the translation is easy to invert. If the problem of inverting the endomorphism and thus [z] is as hard as the discrete logarithm problem in E, then the size of the cryptographic group can be smaller than the group used for RSA trapdoor one-way functions.
摘要:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.
摘要翻译:通过将至少一个操作数布置成具有相对较小的比特长度来提供有限域中的组操作的组合的加速计算。 在椭圆曲线组中,代表点R的值对应于其他两个点uG和vG的和的验证是通过导出比特长度减小的整数w,z获得的,并且使得v = w / z。 然后,验证等式R = uG + vQ可以被计算为-zR +(uz mod n)G + wQ = 0,其中z和w的比特长度减小。 这在数字签名验证中是有益的,其中可以实现增加的验证。
摘要:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.
摘要翻译:通过将至少一个操作数布置成具有相对较小的比特长度来提供有限域中的组操作的组合的加速计算。 在椭圆曲线组中,代表点R的值对应于其他两个点uG和vG的和的验证是通过导出比特长度减小的整数w,z获得的,并且使得v = w / z。 然后,验证等式R = uG + vQ可以被计算为-zR +(uz mod n)G + wQ = 0,其中z和w为减少的比特长度。 这在数字签名验证中是有益的,其中可以实现增加的验证。
摘要:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.
摘要:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.
摘要翻译:通过将至少一个操作数布置成具有相对较小的比特长度来提供有限域中的组操作的组合的加速计算。 在椭圆曲线组中,代表点R的值对应于其他两个点uG和vG的和的验证是通过导出比特长度减小的整数w,z获得的,并且使得v = w / z。 然后,验证等式R = uG + vQ可以被计算为-zR +(uz mod n)G + wQ = 0,其中z和w为减少的比特长度。 这在数字签名验证中是有益的,其中可以实现增加的验证。
摘要:
Accelerated computation of combinations of group operations in a finite field is provided by arranging for at least one of the operands to have a relatively small bit length. In a elliptic curve group, verification that a value representative of a point R corresponds the sum of two other points uG and vG is obtained by deriving integers w,z of reduced bit length and so that v=w/z. The verification equality R=uG+vQ may then be computed as −zR+(uz mod n) G+wQ=O with z and w of reduced bit length. This is beneficial in digital signature verification where increased verification can be attained.
摘要翻译:通过将至少一个操作数布置成具有相对较小的比特长度来提供有限域中的组操作的组合的加速计算。 在椭圆曲线组中,代表点R的值对应于其他两个点uG和vG的和的验证是通过导出比特长度减小的整数w,z获得的,并且使得v = w / z。 然后,验证等式R = uG + vQ可以被计算为-zR +(uz mod n)G + wQ = 0,其中z和w为减少的比特长度。 这在数字签名验证中是有益的,其中可以实现增加的验证。
摘要:
A method of decrypting a message encrypted using a truncated ring cryptosystem. The method comprises selecting a window parameter T determining a plurality of windows of a predetermined size, each window being shifted by an amount less than or equal to the window parameter T. A decryption candidate is determined for each possible window. Each decryption candidate is tested to determine whether it is a valid message. The result of the decryption is chosen to be a valid message found in the previous step or if no valid message is found it is indicated that the message could not be decrypted. By this method, a constant number of decryption candidates are determined for each decryption.
摘要:
A method of transmitting messages from a sender to a recipient over a wireless channel, the messages including a sequence counter and a frame counter. The method comprises establishing initial values of the sequence counter and the frame counter at the sender. Initial values of the frame counter and the sequence counter are provided to the recipient. The sender sends compressed messages including the value of the sequence counter and not the frame counter and monitors for an acknowledgement of receipt by the recipient. When no acknowledgment is received, the sender sends uncompressed messages until an acknowledgement of receipt is received from the recipient. The sequence counter is incremented and the next value of the frame counter is established as the integer next larger than previous value of the frame counter which is congruent to the sequence counter modulo 256.
摘要:
A method of communicating in a secure communication system, comprises the steps of assembling as message at a sender, then determining a security level, and including an indication of the security level in a header of the message. The message is then sent to a recipient.