摘要:
In a method for determining transmission coil-specific RF excitation pulses for component coils of a transmission coil array for accelerated, PPA-based volume-selective magnetic resonance excitation of a tissue region of a patient, and a magnetic resonance tomography apparatus operating according to the method, a first series of volume-selective RF excitation pulses along a first transmission trajectory in transmission κ-space is successively individually radiated by the component coils of the transmission coil array and the resulting magnetic resonance signals are received, and a second series of volume-selected RF excitation pulses along a further reduced transmission trajectory in transmission κ-space is simultaneously radiated by all component coils of the transmission coil array and the resulting magnetic resonance signals are received, and a complete transmission trajectory in transmission K-space is then determined from which combination coefficients are calculated, and the coil specific RF excitation pulses are then calculated from the combination coefficients in order to produce a desired excitation profile.
摘要:
In a method for determining transmission coil-specific RF excitation pulses for component coils of a transmission coil array for accelerated, PPA-based volume-selective magnetic resonance excitation of a tissue region of a patient, and a magnetic resonance tomography apparatus operating according to the method, a first series of volume-selective RF excitation pulses along a first transmission trajectory in transmission κ-space is successively individually radiated by the component coils of the transmission coil array and the resulting magnetic resonance signals are received, and a second series of volume-selected RF excitation pulses along a further reduced transmission trajectory in transmission κ-space is simultaneously radiated by all component coils of the transmission coil array and the resulting magnetic resonance signals are received, and a complete transmission trajectory in transmission κ-space is then determined from which combination coefficients are calculated, and the coil specific RF excitation pulses are then calculated from the combination coefficients in order to produce a desired excitation profile.
摘要:
In a method and apparatus for generating a magnetic resonance image of a contiguous region of a human body on the basis of partial parallel acquisition (PPA) by excitation of nuclear spins and measurement of radio-frequency signals indicating the excited spins, the spin excitation is implemented in steps with measurement of an RF response signal simultaneously in each of a number of N component coils. A number of response signals thus are acquired that, for each component coil, form an incomplete data set (40) of acquired RF signals. Additional acquired calibration data points exist for each incomplete data set. The N incomplete data sets are acquired to a subset of M reduced, incomplete data sets on the basis of an N×M reduction matrix, so that M reduced, incomplete data sets are obtained, M complete data sets are formed on the basis of an N×M reconstruction matrix with the non-measured lines of the M reduced, incomplete data sets being reconstructed from all N incomplete data sets. A spatial transformation of the completed reduced data sets is then implemented in order to form a complete image data set from each completed, reduced data set.
摘要:
In a method and apparatus for generating a magnetic resonance image of a contiguous region of a human body on the basis of partial parallel acquisition (PPA) by excitation of nuclear spins and measurement of radio-frequency signals indicating the excited spins, the spin excitation is implemented in steps with measurement of an RF response signal simultaneously in each of a number of N component coils. a number of response signals thus are acquired that, for each component coil, form an incomplete data set (40) of acquired RF signals. Additional acquired calibration data points exist for each incomplete data set. The N incomplete data sets are acquired to a subset of M reduced, incomplete data sets on the basis of an N×M reduction matrix, so that M reduced, incomplete data sets are obtained, M complete data sets are formed on the basis of an N×M reconstruction matrix with the non-measured lines of the M reduced, incomplete data sets being reconstructed from all N incomplete data sets. A spatial transformation of the completed reduced data sets is then implemented in order to form a complete image data set from each completed, reduced data set.
摘要:
A computer-implemented method for quantifying fat and iron in anatomical tissue includes acquiring a plurality of multi-echo signal datasets representative of the anatomical tissue using a magnetic resonance (MR) pulse sequence. A plurality of multi-echo signal datasets are selected from the plurality of multi-echo signal datasets and used to determine a first water magnitude value and a first fat magnitude value. In response to determining that the multi-echo signal datasets include at least three multi-echo datasets, a first stage analysis is performed. This first stage analysis comprises selecting a first effective transverse relaxation rate value. Next, first algorithm inputs comprising the first water magnitude value, the first fat magnitude value, and the first effective transverse relation rate value are created. Then, a non-linear fitting algorithm is performed based on the first algorithm inputs to calculate a second water magnitude value, a second fat magnitude value, and a second effective transverse relaxation rate value. A first proton density fat fraction value is then determined based on the second water magnitude value and the second fat magnitude value.
摘要:
An apparatus and a method for generating an image from N reception signal data sets of signals received by a plurality of coils of a magnetic resonance tomography appliance from a region of a body to be examined using an image processing computer are provided. The apparatus includes a degree-of-compression determining device. A ratio N/M of the number N of N reception signal data sets generated from the signals received by the plurality of coils to a smaller number M of mode data sets is defined taking account of a plurality of parameters. The plurality of parameters at least also represent system resources of the image processing computer. Using a compression computer, the N reception signal data sets are compressed into M mode data sets. After this, the M mode data sets are used by the image processing computer for generating the image of the region of the body.
摘要:
In a method and apparatus for time-resolved acquisition of magnetic resonance (MR) data, an examination subject is continuously moved through the examination region of an MR scanner, and MR signals are acquired. Prior to the acquisition of MR signals, a phase coding that corresponds to a position for data entry in k-space is carried out. An interruption of the movement of the subject takes place at a predetermined table position, and the acquisition of MR signals is continued over the course of a predetermined time period, while the subject is at rest in the predetermined position. At least while the subject is at rest, the phase coding causes acquisition of a predetermined number of MR signals for filling a first region of k-space to alternate with MR data and a predetermined number of MR signals for filling a second region of k-space.
摘要:
A fast, efficient, qualitatively high-grade shim is enabled in a magnetic resonance apparatus having a displaceable patient bed and an examination region of the patient that is to be examined is larger than an imaging region of the magnetic resonance apparatus. Field inhomogeneities are measured while the examination region is moved through the imaging region by a continuous displacement of the patient bed with the patient positioned thereon. Information representing field inhomogeneities is acquired at multiple positions of the patient bed from respective magnetic resonance signals received at these positions, by excitation of multiple respective slices before the readout of the echo of the first of these slices, with one echo train composed of multiple echoes being generated per excitation signal. Shim parameters of the magnetic resonance apparatus are adjusted dependent on the measured information.
摘要:
In a method and for MR apparatus PPA imaging with radial data acquisition in magnetic resonance tomography, k-space is under-scanned by acquiring a number of projections φ with a coil array of M component coils, a shift operator C(±nΔk) is determined for a projection φi on the basis of measured magnetizations along a projection φi±α0 that encompasses with φi an angle α0, with n=1, 2, . . . , M−1, the shift operator C(±nΔk) is applied to individual points of projection φi in order to obtain calculated projection points, the determination and the application of the shift operator C(±nΔk) are repeated for all projections φ, and an image is reconstructed in the spatial domain on the basis of the projections, which have been completed purely computationally.
摘要:
In a method to select an undersampling scheme of k-space and an associated set of reconstruction kernels to acquire reduced magnetic resonance (MR) data sets with multiple coils, a calibration data set is acquired for each of the respective coils, a noise covariance is determined from autocorrelations and correlations of the noise of the various coils. At least one set of reconstruction kernels is calculated for each of the multiple undersampling schemes from the calibration data sets of the various coils. For each set of reconstruction kernels, a characteristic value is calculated from the noise covariance and the respective reconstruction kernels of the coils, with the characteristic value being proportional to a spatial mean value of a signal noise of an MR image. A selected undersampling scheme and a selected set of reconstruction kernels are selected based on the calculated characteristic values.