摘要:
A system and method are provided for avoiding transient compressor surge in a turbocharged internal combustion engine. The system includes a control circuit responsive to at least one engine operating parameter to determine a minimum fueling limit that is generally higher under certain engine operating conditions than the default engine fueling value. Under such conditions, the minimum fueling limit is used to establish a lower limit of fuel supplied to the engine in order to avoid turbocharger transient compresser surge conditions. In one embodiment, the at least one engine operating parameter includes intake manifold air pressure, and in an alternative embodiment, the at least one engine operating parameter further includes intake manifold air temperature. In either case, the at least one engine operating parameter also preferably includes engine speed.
摘要:
A variable geometry turbine comprising: a housing; a turbine wheel supported in the housing for rotation; an annular inlet passage defined between respective inlet surfaces defined by an annular nozzle ring and a facing annular shroud; the nozzle ring can vary the size of the inlet passage; a circumferential array of inlet vanes; the shroud covering the opening of a shroud cavity defined by the housing inlet passage and inboard of the shroud, and defining a circumferential array of slots, the slots and shroud cavity being configured to receive said vanes accommodating movement of the nozzle ring; wherein the annular shroud comprises an outer flange, the outer flange defining a circumferential groove for receiving a retaining ring for securing the shroud in the opening of the shroud cavity and defined on an inboard side by a flange wall; wherein an annular flange rim extends axially inboard from said flange wall.
摘要:
A thrust bearing for a turbocharger includes a main body portion which defines a central bore for receipt of a thrust collar, an oil reservoir in the shape of a blind, oblong slot disposed in the main body portion and an oil passageway connecting the oil reservoir with the central bore. As oil is drained from the turbocharger by a siphoning action as the engine oil level drops, oil which is stored in the oil reservoir will remain and after the engine has completely stopped this stored oil is available to drain into the interface between the thrust collar and central bore of the thrust bearing in order to provide lubricating oil to this interface upon restart of the engine. Oil is also provided by the reservoir to the turbine and compressor journal bearings where it is held in small clearances on the inner and outer surfaces of the journal bearings.
摘要:
An internal combustion engine has a turbocharger inlet flange mounted to the outlet flange of the exhaust manifold of the engine. The exhaust gas flow out of the manifold is through two ports having a centrally located guide wall directing flow from the manifold out the flange into the turbocharger inlet. The two ports are trapezoidal in shape with a short common dividing wall which, for each port, blends at a short radius into two diverging straight walls, one at each end of the common wall, and which blend from their ends into the outer wall of the port, resulting in trapezoidal port shape. The inlet flange of the turbocharger casing has ports matching and in registry with the two ports of the exhaust manifold flange.
摘要:
A coating for a portion of the flowpath of a diffuser of a centrifugal compressor. The coating covers a portion of the diffuser against which flows high velocity air from the compressor blades. The coating is a smooth, tenacious, heat-resistant powder paint that reduces the aerodynamic drag of the diffuser walls on the high velocity air thus increasing the efficiency of the compressor.
摘要:
The present invention relates to an internal combustion engine and more particularly to an internal combustion engine which includes a turbocharger system having at least one smaller exhaust gas turbocharger and at least one larger exhaust gas turbocharger, as well as means for controlling the exhaust gas and intake air flow to the respective turbochargers. The turbochargers and control means are interconnected to provide pressurized intake air throughout the entire operating range of the internal combustion engine, while effectively bypassing the smaller exhaust gas turbocharger during operating conditions which produce high exhaust gas volumes. The operating characteristics of this turbocharger system are matched with the operating range of an internal combustion engine to provide improved performance, efficiency, transient response and reliability, while reducing maintenance and undesirable emissions.
摘要:
A variable geometry turbine comprising: a housing; a turbine wheel supported in the housing for rotation; an annular inlet passage defined between respective inlet surfaces defined by an annular nozzle ring and a facing annular shroud; the nozzle ring can vary the size of the inlet passage; a circumferential array of inlet vanes; the shroud covering the opening of a shroud cavity defined by the housing inlet passage and inboard of the shroud, and defining a circumferential array of slots, the slots and shroud cavity being configured to receive said vanes accommodating movement of the nozzle ring; wherein the annular shroud comprises an outer flange, the outer flange defining a circumferential groove for receiving a retaining ring for securing the shroud in the opening of the shroud cavity and defined on an inboard side by a flange wall; wherein an annular flange rim extends axially inboard from said flange wall.
摘要:
An improved wastegated turbocharger including ejector nozzles such that the bypassed exhaust flow re-enters the main exhaust flow at a predetermined pitch angle and yaw angle so as to create a drop in turbine back pressure. The exhaust gas turbocharger includes a turbine housing having a turbine chamber, an exhaust housing portion, and an exhaust gas inlet to said turbine chamber wherein a turbine wheel is rotatably mounted in the turbine chamber and is rotatably responsive to exhaust gas flow from the exhaust gas inlet. In one embodiment, an outlet insert is provided which is rigidly attached to the exhaust housing portion and extends toward the turbine chamber thereby defining a bypass chamber and providing an exhaust gas outlet. A bypass flow passage which fluidly connects the exhaust gas inlet with the bypass chamber is also provided. The outlet insert includes a plurality of ejector nozzles for directing exhaust flow from the bypass chamber to the exhaust gas outlet. In another embodiment, an ejector nozzle ring with plurality of ejector nozzles is positioned between the turbine chamber and the outlet insert.
摘要:
A closed crankcase ventilation system for a turbocharger internal combustion engine which uses differential pressure between the turbo compressor inlet and the crankcase to force blow-by gases through a separation device. The zone of low pressure of the turbo compressor inlet is located at the innermost diameter of the compressor inlet shroud. The difference between the pressure in the compressor inlet and the crankcase creates a vacuum which pulls gas from the crankcase into the ventilation system. The ventilation system includes a high restriction separator for removing oil from the blow-by gases. A control valve bypasses the separation device when insufficient pressure differential exists to drive the separator. Additionally, a system for ventilating crankcase gases from a crankcase of the engine includes a first flow passage communicating between the crankcase and a turbocharger of the engine, an high restriction separator positioned in the flow passage for separating air contaminant mixtures from crankcase gases, a first connection for connecting a first end of the flow passage to the crankcase, a second connection for connecting a second end of the flow passage to a predetermined point of the turbocharger, a second flow passage communicating between the first flow passage and an intake manifold of the engine, and a bypass flow passage for bypassing the separator. In this case, the crankcase gases are directed through the separator during heavy load, light load and idle operating conditions when sufficient vacuum exists to draw the crankcase gases through the coalescing filter and through the bypass flow passage when a sufficient vacuum is not present.