摘要:
The invention provides a sensing device capable of outputting a correct signal precisely corresponding to a particular position (angle) of, for example a protruding or recessed portion of a rotating member made of a magnetic material. The sensing device includes: a magnet for generating magnetic field; a rotary member of magnetic material for changing a magnetic field generated by the magnet, the rotary member of magnetic material being disposed a predetermined distance apart from the magnet; and a giant magnetoresistance device for detecting the varying magnetic field, the operating range of the giant magnetoresistance device being set such that the change in resistance of the giant magnetoresistance device is uniform over the entire operating range in both directions of change in the magnetic field induced by the rotary member of magnetic material, wherein the giant magnetoresistance device is disposed in such a manner that the center of the magnetic field sensing plane of the giant magnetoresistance device deviates from the center of the magnet in a direction parallel to a plane containing the displacement direction of the rotary member of magnetic material.
摘要:
The magnetic sensor in the invention is arranged to detect a change of magnetic field caused by a movement of the magnetic movable by a magnetic sensor element arranged with a gap to the magnetic movable, to convert the detected change of magnetic field by first and second bridge circuits into electric signals, to generate first and second rectangular-wave signals by first and second comparator circuits depending upon the electric signals, and to form a signal having at least four levels by a signal forming circuit, thereby detecting a moving direction of the magnetic movable depending upon a level-change order in the signal. This makes it possible to detect a rotating direction of the magnetic movable rapidly and correctly.
摘要:
A magnetic detection apparatus can reduce the cost of production to a substantially extent. The magnetic detection apparatus includes a magnetic movable element (1) having a first groove (1a) and a second groove (1b) that are different in diametral depth from each other, a magnetoresistive segment (3a) that is arranged apart from the magnetic movable element (1) so as to come in opposition to the first and second grooves (1a, 1b) in accordance with the moving magnetic movable element (1), a magnet (5) that is arranged in the vicinity of the magnetoresistive segment (3a) for applying a magnetic field thereto, and a processing circuit part (4) that generates different output signals in accordance with a change of the magnetic field applied to the magnetoelectric conversion element (3a) which is caused in accordance with the first and second grooves (1a, 1b) in opposition to said processing circuit part (4).
摘要:
The invention provides a sensing device capable of outputting a correct signal precisely corresponding to a particular position (angle) such as a protruding or recessed portion of a rotating member made of a magnetic material over the entire operating temperature range regardless of the temperature coefficient of the magnetic field sensing element. The sensing device includes: a magnet for generating a magnetic field; a rotary member of magnetic material for changing the magnetic field generated by the magnet, the rotary member being disposed at a predetermined distance apart from the magnet; a giant magnetoresistance device which changes in resistance in response to the magnetic field whose magnitude is changed by the rotary member of magnetic material; and an AC coupling circuit for performing an AC coupling process on the output of signal of the giant magnetoresistance device.
摘要:
A magnetic detector, wherein the magnetic/electric conversion element is constituted by at least six segments symmetrically arranged in a direction in which the magnetic moving body rotates maintaining a predetermined pitch with respect to the center line of the magnet, first and second bridge circuits are constituted so as to produce outputs accompanying the rotation of the magnetic moving body, and a third bridge circuit is constituted so as to produce an output accompanying the rotation of the magnetic moving body, and wherein a comparison level of a comparator circuit that shapes the waveform of a differential output signal of the first and second bridge circuits is adjusted relying upon an output signal of the third bridge circuit.
摘要:
The magnetic sensor in the invention includes a detecting section that detects a change of magnetic flux due to a movement of the magnetic movable, comparator circuits constituting a converting section that converts a change of magnetic flux detected by the detecting section into an electric amount, and a D-FF circuit device, in a sensor unit having a power-supplying power terminal VB, a ground terminal GND and an output terminal VOUT. A current control section is provided to change the amount of current flowing through at least one of the power terminal and the ground terminal, correspondingly to a moving direction of the magnetic movable. Thus, a moving direction of the magnetic movable can be determined depending upon the amount of current.
摘要:
The magnetic sensor in the invention is arranged to detect a change of magnetic field caused by a movement of the magnetic movable by a magnetic sensor element arranged with a gap to the magnetic movable, to convert the detected change of magnetic field by first and second bridge circuits into electric signals, to generate first and second rectangular-wave signals by first and second comparator circuits depending upon the electric signals, and to form a signal having at least four levels by a signal forming circuit, thereby detecting a moving direction of the magnetic movable depending upon a level-change order in the signal. This makes it possible to detect a rotating direction of the magnetic movable rapidly and correctly.
摘要:
Disclosed is a magnetic detector in which a GMR device is operated within the limited range of a magnetic field so as to optimize changes in resistance value of the GMR device and to improve noise resistance. The magnetic detector comprises a magnet (4) for generating a magnetic field, a rotary member (2) of magnetic material arranged with a predetermined gap left relative to the magnet and provided with projections capable of changing the magnetic field generated by the magnet, and a giant magnetoresistance device (3) of which resistance value is changed depending on the magnetic field changed by the rotary member of magnetic material. The giant magnetoresistance device is arranged in such a position with a predetermined gap relative to the magnetic field generating means that the giant magnetoresistance device is subject to a bias magnetic field applied with the intensity of magnetic field in a predetermined range, e.g., 100±150 [Oe], where the giant magnetoresistance device exhibits a high resistance change rate.
摘要:
A magnetic detector, wherein the magnetic/electric conversion element is constituted by at least six segments symmetrically arranged in a direction in which the magnetic moving body rotates maintaining a predetermined pitch with respect to the center line of the magnet, first and second bridge circuits are constituted so as to produce outputs accompanying the rotation of the magnetic moving body, and a third bridge circuit is constituted so as to produce an output accompanying the rotation of the magnetic moving body, and wherein a comparison level of a comparator circuit that shapes the waveform of a differential output signal of the first and second bridge circuits is adjusted relying upon an output signal of the third bridge circuit.
摘要:
A magnetic detection apparatus is able to make a selection between AC coupling and DC coupling thereby to improve the accuracy of a final output signal corresponding to a magnetic movable element, thus making it possible to ensure excellent detection performance. The magnetic detection apparatus with a sensor composed of magnetoresistive elements (2a, 2b) for detecting the strength of a magnetic field includes a first comparison circuit (31) that has a first comparison level (VR1), and waveform shapes the amplitude of a detection signal (C) from the magnetoresistive elements (2a, 2b) through DC coupling, a second comparison circuit (32) that has a second comparison level (VR2), and waveform shapes the amplitude of the detection signal C through DC coupling, and a third comparison circuit (33) that has a third comparison level VR3, and waveform shapes the amplitude of the detection signal C after AC coupling.