摘要:
A color representation technique to be effectively applicable to a pixel shifted arrangement to realize high sensitivity and high resolution is provided by using a dipersive prism or diffraction.A dispersive element is provided for an image sensor in which photosensitive cells are arranged to be shifted from each other by a half pitch both horizontally and vertically. The dispersive element makes at least G rays fall straight down to a pixel right under itself and also makes either R rays or B rays incident on an adjacent pixel. Meanwhile, a photosensitive cell, for which no dispersive element is provided, receives directly incident light, too. Color information can be obtained by making computations on photoelectrically converted signals provided by these pixels.
摘要:
Light-splitting elements are arranged in at least two columns and two rows to form two pairs 1a, 1b and 1c, 1d. Each element splits incident light into light rays and makes them fall on a portion of a photosensing section right under itself and an adjacent photosensitive cell. The element 1a splits the incident light so that a primary color ray C1 and its complementary color ray C1′ enter an adjacent cell 2b and an underlying cell 2a, respectively. The element 1b makes a primary color ray C2 and its complementary color ray C2′ enter an underlying cell 2a and an adjacent cell 2a, respectively. The element 1c does the same as the element 1b. And the element 1d makes a primary color ray C3 and its complementary color ray C3′ enter an adjacent cell 2c and an underlying cell 2d, respectively. These photosensitive cells 2 perform photoelectric conversion, thereby outputting an electrical signal representing the intensity of the incident light. By carrying out simple calculations between the outputs of these cells, a color signal and a luminance signal are generated.
摘要:
Light-splitting elements are arranged in at least two columns and two rows to form two pairs 1a, 1b and 1c, 1d. Each element splits incident light into light rays and makes them fall on a portion of a photosensing section right under itself and an adjacent photosensitive cell. The element 1a splits the incident light so that a primary color ray C1 and its complementary color ray C1′ enter an adjacent cell 2b and an underlying cell 2a, respectively. The element 1b makes a primary color ray C2 and its complementary color ray C2′ enter an underlying cell 2a and an adjacent cell 2a, respectively. The element 1c does the same as the element 1b. And the element 1d makes a primary color ray C3 and its complementary color ray C3′ enter an adjacent cell 2c and an underlying cell 2d, respectively. These photosensitive cells 2 perform photoelectric conversion, thereby outputting an electrical signal representing the intensity of the incident light. By carrying out simple calculations between the outputs of these cells, a color signal and a luminance signal are generated.
摘要:
A mirror 1a transmits a cyan (Cy) ray and reflects an R ray, and a mirror 1d transmits a yellow (Ye) ray and reflects a B ray. The mirrors 1a and 1d are arranged inside a light-transmitting member 3 and are also tilted so that the light reflected from each of them is further reflected from the interface between the light-transmitting member 3 and the air and then incident on an adjacent photosensitive cell. Photosensitive cells 2a and 2d receive the light rays that have been transmitted through the mirrors 1a and 1d, respectively. No mirrors are arranged over photosensitive cells 2b and 2c. The photosensitive cell 2b receives directly incident light and the light ray reflected from the mirror 1a. The photosensitive cell 2c receives the directly incident light and the light ray reflected from the mirror 1d. Color information is obtained by making computations on the output signals of the respective photosensitive cells.
摘要:
The solid state image sensor of this invention includes multiple units, each of which includes first and second photosensitive cells 2a, 2b and a dispersive element 1a facing the first cell 2a. The element 1a passes a part of incoming light with a first color component to the second cell 2b. The first cell 2a receives a smaller quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The second cell 2b receives a greater quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The quantity of that part of the incoming light with the first color component is calculated based on the difference between photoelectrically converted signals supplied from the first and second cells 2a and 2b and information representing the ratio of the quantity of the light with the first color component received by the second cell to that of the part of the incoming light with the first color component.
摘要:
A mirror 1a transmits a cyan (Cy) ray and reflects an R ray, and a mirror 1d transmits a yellow (Ye) ray and reflects a B ray. The mirrors 1a and 1d are arranged inside a light-transmitting member 3 and are also tilted so that the light reflected from each of them is further reflected from the interface between the light-transmitting member 3 and the air and then incident on an adjacent photosensitive cell. Photosensitive cells 2a and 2d receive the light rays that have been transmitted through the mirrors 1a and 1d, respectively. No mirrors are arranged over photosensitive cells 2b and 2c. The photosensitive cell 2b receives directly incident light and the light ray reflected from the mirror 1a. The photosensitive cell 2c receives the directly incident light and the light ray reflected from the mirror 1d. Color information is obtained by making computations on the output signals of the respective photosensitive cells.
摘要:
A color representation technique to be effectively applicable to a pixel shifted arrangement to realize high sensitivity and high resolution is provided by using a dipersive prism or diffraction.A dispersive element is provided for an image sensor in which photosensitive cells are arranged to be shifted from each other by a half pitch both horizontally and vertically. The dispersive element makes at least G rays fall straight down to a pixel right under itself and also makes either R rays or B rays incident on an adjacent pixel. Meanwhile, a photosensitive cell, for which no dispersive element is provided, receives directly incident light, too. Color information can be obtained by making computations on photoelectrically converted signals provided by these pixels.
摘要:
The solid state image sensor of this invention includes multiple units, each of which includes first and second photosensitive cells 2a, 2b and a dispersive element 1a facing the first cell 2a. The element 1a passes a part of incoming light with a first color component to the second cell 2b. The first cell 2a receives a smaller quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The second cell 2b receives a greater quantity of light with the first color component than that of the light with the first color component incident on the dispersive element. The quantity of that part of the incoming light with the first color component is calculated based on the difference between photoelectrically converted signals supplied from the first and second cells 2a and 2b and information representing the ratio of the quantity of the light with the first color component received by the second cell to that of the part of the incoming light with the first color component.
摘要:
An imaging photodetection device (4) includes: a plurality of photodetectors (6) that are arrayed on a substrate (5) at least along a first direction; a transparent low refractive index layer (12) that is formed above the plurality of photodetectors; and a plurality of transparent high refractive index sections (13) that are embedded in the transparent low refractive index layer along the first direction. On a cross-section of the transparent high refractive index sections orthogonal to the substrate and along the first direction, central axes (14) of the transparent high refractive index sections are bent stepwise. Light that enters the transparent low refractive index layer and the transparent high refractive index section passes therethrough to be separated into 0th-order diffracted light, 1st-order diffracted light, and −1st-order diffracted light. Thereby, improvement in the efficiency of light utilization and pixel densification can be realized.
摘要:
An imaging photodetection device (4) includes: a plurality of photodetectors (6) that are arrayed on a substrate (5) at least along a first direction; a transparent low refractive index layer (12) that is formed above the plurality of photodetectors; and a plurality of transparent high refractive index sections (13) that are embedded in the transparent low refractive index layer along the first direction. On a cross-section of the transparent high refractive index sections orthogonal to the substrate and along the first direction, central axes (14) of the transparent high refractive index sections are bent stepwise. Light that enters the transparent low refractive index layer and the transparent high refractive index section passes therethrough to be separated into 0th-order diffracted light, 1st-order diffracted light, and −1st-order diffracted light. Thereby, improvement in the efficiency of light utilization and pixel densification can be realized.