-
公开(公告)号:US20230351168A1
公开(公告)日:2023-11-02
申请号:US18310697
申请日:2023-05-02
摘要: An all-photonic computational accelerator encodes information in the amplitudes of frequency modes stored in a ring resonator. Nonlinear optical processes enable interaction among these modes. Both the matrix multiplication and element-wise activation functions on these modes (the artificial neurons) occur through coherent processes, enabling the representation of negative and complex numbers without digital electronics. This accelerator has a lower hardware footprint than electronic and optical accelerators, as the matrix multiplication happens in a single multimode resonator on chip. Our architecture provides a unitary, reversible mode of computation, enabling on-chip analog Hamiltonian-echo backpropagation for gradient descent and other self-learning tasks. Moreover, the computational speed increases with the power of the pumps to arbitrarily high rates, as long as the circuitry can sustain the higher optical power.