Abstract:
Artificial limbs and joints that behave like biological limbs and joints employ a synthetic actuator which consumes negligible power when exerting zero force, consumes negligible power when outputting force at constant length (isometric) and while performing dissipative, nonconservative work, is capable of independently engaging flexion and extension tendon-like, series springs, is capable of independently varying joint position and stiffness, and exploits series elasticity for mechanical power amplification.
Abstract:
A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
Abstract:
Artificial limbs and joints that behave like biological limbs and joints employ a synthetic actuator which consumes negligible power when exerting zero force, consumes negligible power when outputting force at constant length (isometric) and while performing dissipative, nonconservative work, is capable of independently engaging flexion and extension tendon-like, series springs, is capable of independently varying joint position and stiffness, and exploits series elasticity for mechanical power amplification.
Abstract:
A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
Abstract:
A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.
Abstract:
A neuromuscular model-based controller for a robotic limb having at least one joint includes a neuromuscular model having a muscle model, muscle geometry and reflex feedback loop to determine at least one torque or impedance command to be sent to the robotic limb. One or more parameters that determine relation between feedback data and activation of the muscle model are adjusted consequent to sensory data from at least one of an intrinsic sensor and an extrinsic sensor. A controller in communication with the neuromuscular model is configured to receive the at least one torque or impedance command and controls at least one of position, torque and impedance of the robotic limb joint.