Abstract:
An extended overdrive table uses the saturation regions to store useful data that conformably extends the unsaturated region in a natural way. This extended overdrive table reduces the size of any interpolation errors when straddling crossover points to acceptable levels without requiring storing or using any crossover data. In addition, since the saturation regions are used to hold the new data, no additional storage requirements are introduced. The numeric range of the extended table is increased and it is therefore supposed that the bit depth of the table entries is increased, but the table can be resealed to retain the original bit depth with insignificant loss of accuracy. Also, the new data incorporated into the saturation regions allows run time calculation of the pixel attained at the end of the frame time that is needed as the start of the pixel for the next cycle.
Abstract:
A method for reducing a response time of the pixels corresponding to a period of time required for a selected pixel at a starting pixel value to reach a target pixel value. Providing an n×n factored zero diagonal LCD overdrive matrix and for a selected pixel at a particular start pixel value, selecting a particular target pixel value to be reached in one frame time, and determining a particular overdrive pixel value based upon the particular start pixel value and the particular target pixel value using the factored zero diagonal LCD overdrive matrix. When the start pixel value and the target pixel value are equal or almost equal in value, then setting the overdrive pixel value to a main diagonal pixel value such that the start pixel value is equal to the target pixel value.
Abstract:
A method of overdriving LCD panels to improve LCD pixel response time is described that does not rely upon conventional use of overdrive look up tables. The method is based upon modeling the LCD pixels as linear second-order dynamical systems that leads to simple runtime calculations requiring but a small number of stored panel specific constants.
Abstract:
A method and an apparatus for performing the method of decoding and playing in reverse MPEG encoded content. The MPEG encoded content comprises a plurality of pictures frames. The picture frames are comprised of one or more picture frame types selected from the group of picture frame types including I-frames, P-frames, and B-frames. The method and the apparatus for performing the method comprise the steps of obtaining a group of MPEG picture frames (“GOP”), determining the total number of picture frames in the GOP, and setting an index value equal to the total number of picture frames in the GOP. Next, a picture frame F that has a display order equal to the index value is decoded and displayed, and the earliest B-frame that depends upon frame F is determined. All the B-frames that depend upon frame F are decoded and displayed from highest display order to lowest display order, and the index value then is set to a value equal to one less than the display order of the earliest B-frame that depends upon frame F. The process then repeats by obtaining, decoding and displaying the next frame F having a display order equal to the index value, and decoding and displaying the B-frames that depend upon the frame F.
Abstract:
A method of overdriving LCD panels to improve LCD pixel response time is described that does not rely upon conventional use of overdrive look up tables. The method is based upon modeling the LCD pixels as linear second-order dynamical systems that leads to simple runtime calculations requiring but a small number of stored panel specific constants.
Abstract:
A method for reducing a response time of the pixels corresponding to a period of time required for a selected pixel at a starting pixel value to reach a target pixel value. Providing an n×n factored zero diagonal LCD overdrive matrix and for a selected pixel at a particular start pixel value, selecting a particular target pixel value to be reached in one frame time, and determining a particular overdrive pixel value based upon the particular start pixel value and the particular target pixel value using the factored zero diagonal LCD overdrive matrix. When the start pixel value and the target pixel value are equal or almost equal in value, then setting the overdrive pixel value to a main diagonal pixel value such that the start pixel value is equal to the target pixel value.
Abstract:
An extended overdrive table uses the saturation regions to store useful data that conformably extends the unsaturated region in a natural way. This extended overdrive table reduces the size of any interpolation errors when straddling crossover points to acceptable levels without requiring storing or using any crossover data. In addition, since the saturation regions are used to hold the new data, no additional storage requirements are introduced. The numeric range of the extended table is increased and it is therefore supposed that the bit depth of the table entries is increased, but the table can be resealed to retain the original bit depth with insignificant loss of accuracy. Also, the new data incorporated into the saturation regions allows run time calculation of the pixel attained at the end of the frame time that is needed as the start of the pixel for the next cycle.