摘要:
A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
摘要:
A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
摘要:
A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
摘要:
A memory cell structure and method to form such structure. The method partially comprised of forming a via within an oxidizing layer, over the center of a bottom electrode. The method includes depositing a via spacer along the sidewalls of the via and oxidizing the via spacer. The via spacer being comprised of a material having a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The via area is reduced by expansion of the via spacer during the oxidation. Alternatively, the method is partially comprised of forming a via within a first layer, over the center of the bottom electrode. The first layer has a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The method also includes oxidizing at least a portion of the sidewalls of the via in the first layer.
摘要:
A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
摘要:
A memory cell structure and method to form such structure. The method partially comprised of forming a via within an oxidizing layer, over the center of a bottom electrode. The method includes depositing a via spacer along the sidewalls of the via and oxidizing the via spacer. The via spacer being comprised of a material having a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The via area is reduced by expansion of the via spacer during the oxidation. Alternatively, the method is partially comprised of forming a via within a first layer, over the center of the bottom electrode. The first layer has a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The method also includes oxidizing at least a portion of the sidewalls of the via in the first layer.
摘要:
A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
摘要:
A memory cell structure and method for forming the same. The method includes forming a pore within a dielectric layer. The pore is formed over the center of an electrically conducting bottom electrode. The method includes depositing a thermally insulating layer along at least one sidewall of the pore. The thermally insulating layer isolates heat from phase change current to the volume of the pore. In one embodiment phase change material is deposited within the pore and the volume of the thermally insulating layer. In another embodiment a pore electrode is formed within the pore and the volume of the thermally insulating layer, with the phase change material being deposited above the pore electrode. The method also includes forming an electrically conducting top electrode above the phase change material.
摘要:
A memory cell structure and method to form such structure. The method partially comprised of forming a via within an oxidizing layer, over the center of a bottom electrode. The method includes depositing a via spacer along the sidewalls of the via and oxidizing the via spacer. The via spacer being comprised of a material having a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The via area is reduced by expansion of the via spacer during the oxidation. Alternatively, the method is partially comprised of forming a via within a first layer, over the center of the bottom electrode. The first layer has a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The method also includes oxidizing at least a portion of the sidewalls of the via in the first layer.
摘要:
A memory cell structure and method to form such structure. The method partially comprised of forming a via within an oxidizing layer, over the center of a bottom electrode. The method includes depositing a via spacer along the sidewalls of the via and oxidizing the via spacer. The via spacer being comprised of a material having a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The via area is reduced by expansion of the via spacer during the oxidation. Alternatively, the method is partially comprised of forming a via within a first layer, over the center of the bottom electrode. The first layer has a Pilling-Bedworth ratio of at least one and one-half and is an insulator when oxidized. The method also includes oxidizing at least a portion of the sidewalls of the via in the first layer.