Abstract:
An implantable cardioverter defibrillator (ICD) configured to transmit a tissue conduction communication (TCC) signal includes a TCC transmitter module configured to generate the TCC signal and transmit the TCC signal via a plurality of electrodes. The TCC signal comprises a biphasic signal having an amplitude and a frequency, wherein at least one of the amplitude and the frequency are configured to avoid stimulation of tissue of the patient. The TCC transmitter module comprises protection circuitry coupled between a current source and the plurality of electrodes, wherein the protection circuitry is configured to protect the signal generator from an external anti-tachyarrhythmia shock delivered to the patient.
Abstract:
An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
Abstract:
A medical implant information reporting device and method of charging the same, the reporting device having an integrated harvesting coil configured to couple energy from an electromagnetic field of a source coil to induce current in the harvesting coil, are provided. According to one aspect, a method includes electrically coupling the harvesting coil to the source coil to charge the medical implant information reporting device, the source coil being sized to be removably disposed one of on and around the torso of a patient and configured to inductively power a medical implant about which the medical implant information reporting device reports.
Abstract:
An implantable medical device comprises a communication module that comprises at least one of a receiver module and a transmitter module. The receiver module is configured to both receive from an antenna and demodulate an RF telemetry signal, and receive from a plurality of electrodes and demodulate a tissue conduction communication (TCC) signal. The transmitter module is configured to modulate and transmit both an RF telemetry signal via the antenna and a TCC signal via the plurality of electrodes. The RF telemetry signal and the TCC signal are both within a predetermined band for RF telemetry communication. In some examples, the IMD comprises a switching module configured to selectively couple one of the plurality of electrodes and the antenna to the receiver module or transmitter module.
Abstract:
This disclosure provides an extravascular ICD system and method for defibrillating a heart of a patient. The extravascular ICD system includes multiple extravascular electrical stimulation leads or lead segments located in close proximity to one another and having respective defibrillation electrodes. The ICD system utilizes the multiple defibrillation electrodes to form an extravascular electrode vector that may result a reduction in the shock impedance and/or a reduction in the DFT compared to extravascular ICD systems that include only a single extravascular defibrillation electrode. An ICD of the system may, for example, deliver a defibrillation shock using an electrode vector in which a first polarity of the electrode vector is formed by electrically coupling first and second defibrillation electrodes of first and second leads, respectively, to the therapy circuitry and a second polarity of the electrode vector is formed by electrically coupling a housing of the ICD to the therapy circuitry.