Abstract:
An improved medical electrical lead is disclosed herein. The lead may include a longitudinally extending body having a distal end, a proximal end, a conductive element extending between the distal and proximal ends, and an electrode coupled to the conductive element utilizing a reflow process. The conductive element and electrode may comprise materials that are incompatible.
Abstract:
An implantable electrode for electrical stimulation of a body, for example, being a component of an implantable medical electrical lead, is preferably in the form of a coiled conductor wire, wherein the wire is formed by a tantalum (Ta) core directly overlaid with a platinum-iridium (Pt—Ir) cladding. When a maximum thickness of the Pt—Ir cladding defines a cladded zone between an outer, exposed surface of the electrode and the Ta core, a surface of the Ta core encroaches into the cladded zone by no more than approximately 50 micro-inches. The tantalum core may be cold worked to improve surface quality or formed from a sintered and, preferably, grain stabilized tantalum.
Abstract:
An implantable electrode for electrical stimulation of a body, for example, being a component of an implantable medical electrical lead, is preferably in the form of a coiled conductor wire, wherein the wire is formed by a tantalum (Ta) core directly overlaid with a platinum-iridium (Pt—Ir) cladding. When a maximum thickness of the Pt—Ir cladding defines a cladded zone between an outer, exposed surface of the electrode and the Ta core, a surface of the Ta core encroaches into the cladded zone by no more than approximately 50 micro-inches. The tantalum core may be cold worked to improve surface quality or formed from a sintered and, preferably, grain stabilized tantalum.